
Adafruit I2S Stereo Decoder - UDA1334A
Created by lady ada

Last updated on 2020-04-14 05:16:44 PM EDT

Overview

This fully-featured UDA1334A I2S Stereo DAC breakout is a perfect match for any I2S-output audio interface. It's
affordable but sounds great! The NXP UDA1334A is a jack-of-all-I2S-trades: you can use 3.3V - 5V logic levels (a rarity),
and can process multiple different formats by setting two pins to high or low. The DAC will process data immediately,
and give you a clear, analog, stereo line level output. It's even cool with MCLK-less I2S interfaces such as the
Raspberry Pi (which it's ideal for) - a built in PLL will generate the proper clock from the incoming signal.

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 3 of 43

For inputs, you can use classic I2S (the default) or 16-bit, 20-bit or 24-bit left justified data. You can set it up to take an
input system/master clock but we default-set it to just generate it for you, so you only need to connect Data In, Word
Select (Left/Right Clock) and Bit Clock lines. If you want, there's a mute pin and a de-emphasis filter you can turn on.

We put in plenty of ferrite beads, a low-dropout regulator, and the recommended band-pass filter so you get a very
nice clean output. With a sine-wave generator we swept through 20-20KHz and saw no attenuation or distortion. Plug
into either the 3.5mm stereo headphone jack or the breadboard-friendly pads. We think you'll be pleased with this
DAC!

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 4 of 43

Each order comes with one I2S Stereo DAC breakout and some header you can solder on.

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 5 of 43

Pinouts

The UDA1334A is an I2S amplifier - it does not use analog inputs, it only has digital audio input support! Don't confuse
I2S with I2C, I2S is a sound protocol whereas I2C is for small amounts of data.

Power Pins

The UDA1334A requires 3.3V power but can take 3-5V

level logic on nearly all pins.

You can provide 3-5V power on the VIN pin and GND

and the built in regulator will generate a nice clean 3.3V

supplier on 3VOut.

Use the quietest power supply for Vin, we do filter the

power supply, but the quieter the better!

I2S Pins

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 6 of 43

https://learn.adafruit.com/assets/48399

Three pins are used for stereo I2S data in. These pins

are required!

These can be 3.3-5V logic

WSEL (Word Select or Left/Right Clock) - this is the

pin that tells the DAC when the data is for the left

channel and when its for the right channel

DIN (Data In) - This is the pin that has the actual

data coming in, both left and right data are sent on

this pin, the WSEL pin indicates when left or right

is being transmitted

BCLK (Bit Clock) - This is the pin that tells the

amplifier when to read data on the data pin.

MCLK is not required to use this DAC, if you have an

MCLK pin on your audio source, leave it disconnected.

Audio Outputs

The exciting part! This is where your line level audio

comes out. We put big 47uF blocking capacitors on the

output so you can connect this to any stereo system.

AGND is a clean analog ground signal that we

recommend using as your analog reference, you'll get a

cleaner signal.

Note that this DAC was intended for use with a separate

amplifier and is rated for a 3 KΩ load. However, we've

found you can plug in 32Ω headphones and the output

is current-limited so it won't damage the DAC but you

will get distortions. (Powered headphones won't have

this issue)

Optional Control Pins

There are some extra configuration pins if you want to use them. They are not required for 99% of usage with an
Arduino or Teensy or Raspberry Pi. But you never know! So they are there for you. PLL and SF0 are 3.3V logic only,
the other pins are 3-5V safe.

Most of the pins have to do with changing the setup from audio mode to video mode. If you happen to want video-
mode, for synchronizing with NTSC/PAL, check the datasheet - we haven't used it for that purpose.

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 7 of 43

https://learn.adafruit.com/assets/48400
https://learn.adafruit.com/assets/48401

SCLK (Sys Clock) - Optional 27 MHz 'video mode'

ssytem clock input - by default we generate the

sysclock from the WS clock in 'audio mode' But

the UDA can also take a oscillator input on this pin

Mute - Setting this pin High will mute the output

De-Emphasis - In audio mode (which is the

default), can be used to add a de-emphasis filter.

In video mode, where the system clock is

generated from an oscillator, this is the clock

output.

PLL - sets the PLL mode, by default pulled low for

Audio. Can be pulled high or set to ~1.6V to set

PAL or NTSC video frequency

SF0 and SF1 are used to set the input data format. By

default both are pulled Low for I2S but you can change

them around for alternate formats.

See the back of the PCB for a quick reference

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 8 of 43

https://learn.adafruit.com/assets/48402
https://learn.adafruit.com/assets/48403

Assembly

Installing Standard Headers

 The shield comes with 0.1" standard header.

Break apart the 0.1" header into 6 and 9-pin long pieces

and slip the short ends into the holes in the board

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 9 of 43

https://learn.adafruit.com/assets/48642

Make sure that all of the short parts of the header are

sticking through the two sets of pads on either side of

the board

Solder each one of the pins into the board to make a

secure connection

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 10 of 43

https://learn.adafruit.com/assets/48641
https://learn.adafruit.com/assets/48645

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 11 of 43

https://learn.adafruit.com/assets/48646
https://learn.adafruit.com/assets/48647
https://learn.adafruit.com/assets/48648

That's it! Move on to next page for wiring information

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 12 of 43

https://learn.adafruit.com/assets/48657
https://learn.adafruit.com/assets/48658

Raspberry Pi
Wiring

if you have a Raspberry Pi and you want higher quality audio than the headphone jack can provide, I2S is a good
option! You only use 3 pins, and since its a pure-digital output, there can be less noise and interference.

This board works very well with boards that don't have audio like the Pi Zero and is the easiest way to get quality audio
out

Connect:

Amp Vin to Raspbery Pi 3V or 5V
Amp GND to Raspbery Pi GND
Amp DIN to Raspbery Pi #21
Amp BCLK to Raspbery Pi #18
Amp LRCLK to Raspbery Pi #19

https://adafru.it/A9T

https://adafru.it/A9T

This technique will work with any Raspberry Pi with the 2x20 connector. Older Pi 1's with a 2x13 connector do
not bring out the I2S pins as easily�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 13 of 43

https://cdn-learn.adafruit.com/assets/assets/000/048/415/original/piuda.fzz?1511306914

Raspberry Pi
Setup

Fast Install

Luckily its quite easy to install support for I2S DACs on Raspbian.

These instructions are totally cribbed from the PhatDAC instructions at the lovely folks at
Pimoroni! (https://adafru.it/nFy)

Run the following from your Raspberry Pi with Internet connectivity:

curl -sS https://raw.githubusercontent.com/adafruit/Raspberry-Pi-Installer-Scripts/master/i2samp.sh | bash

We've added an extra helper systemd script that will play quiet audio when the I2S peripheral isn't in use. This
removes popping when playback starts or stops. It uses a tiny amount of CPU time (on a Pi Zero, 5%, on a Pi 2 or 3 its
negligible). You don't need this on RetroPie because it never releases the I2S device, but it's great for Raspbian.

At this time, Raspbery Pi linux kernel does not support mono audio out of the I2S interface, you can only play
stereo, so any mono audio files may need conversion to stereo!�

2017-11-2 Raspbian PIXEL ('full') has broken something in volume control. I2S works, but there's no software
volume setup, if you need this, try Raspbian Lite - will try to fix as soon as we figure out why :)�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 14 of 43

http://learn.pimoroni.com/tutorial/phat/raspberry-pi-phat-dac-install

You will need to reboot once installed.

After rebooting, log back in and re-run the script again...It will ask you if you want to test the speaker. Say yes and
listen for audio to come out of your speakers...

If it sounds really distorted, it could be the volume is too high. However, in order to have volume control appear in
Raspbian desktop or Retropie you must reboot a second time after doing the speaker test, with sudo reboot

Once rebooted, try running alsamixer and use arrow keys to lower the volume, 50% is a good place to start.

If you're still having audio problems, try re-running the script and saying N (disable) the /dev/zero playback service .

You must reboot to enable the speaker hardware!�

You must reboot *twice* to enable alsamixer volume (really!)�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 15 of 43

You can then go to the next page on testing and optimizing your setup. Skip the rest of this page on Detailed
Installation if the script worked for you!

Detailed Install

If, for some reason, you can't just run the script and you want to go through the install by hand - here's all the steps!

Update /etc/modprobe.d (if it exists)

Log into your Pi and get into a serial console (either via a console cable, the TV console, RXVT, or what have you)

Edit the raspi blacklist with

sudo nano /etc/modprobe.d/raspi-blacklist.conf

If the file is empty, just skip this step

However, if you see the following lines:

blacklist i2c-bcm2708
blacklist snd-soc-pcm512x
blacklist snd-soc-wm8804

Update the lines by putting a # before each line

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 16 of 43

Save by typing Control-X Y <return>

Disable headphone audio (if it's set)

Edit the raspi modules list with

sudo nano /etc/modules

If the file is empty, just skip this step

However, if you see the following line:

snd_bcm2835

Put a # in front of it

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 17 of 43

and save with Control-X Y <return>

Create asound.conf file

Edit the raspi modules list with

sudo nano /etc/asound.conf

This file ought to be blank!

Copy and paste the following text into the file

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 18 of 43

pcm.speakerbonnet {
 type hw card 0
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

pcm.softvol {
 type softvol
 slave.pcm "dmixer"
 control.name "PCM"
 control.card 0
}

ctl.softvol {
 type hw card 0
}

pcm.!default {
 type plug
 slave.pcm "softvol"
}

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 19 of 43

Save the file as usual

Add Device Tree Overlay

 Edit your Pi configuration file with

sudo nano /boot/config.txt

And scroll down to the bottom. If you see a line that says: dtparam=audio=on

Disable it by putting a # in front.

Then add:
dtoverlay=hifiberry-dac
dtoverlay=i2s-mmap

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 20 of 43

on the next line. Save the file.

Reboot your Pi with sudo reboot

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 21 of 43

Raspberry Pi
Test

Speaker Tests!

OK you can use whatever software you like to play audio but if you'd like to test the speaker output, here's some quick
commands that will let you verify your amp and speaker are working as they should!

Simple white noise speaker test

Run speaker-test -c2 to generate white noise out of the speaker, alternating left and right.

If you have a mono output amplifier, the I2S amp merges left and right channels, so you'll hear continuous white noise

Simple WAV speaker test

Once you've got something coming out, try to play an audio file with speaker-test (for WAV files, not MP3)

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/Front_Center.wav

You'll hear audio coming from left and right alternating speakers

Simple MP3 speaker test

If you want to play a stream of music, you can try

sudo apt-get install -y mpg123
mpg123 http://ice1.somafm.com/u80s-128-mp3

If you want to play MP3's on command, check out this tutorial which covers how to set that up (https://adafru.it/aTD)

At this time, Jessie Raspbery Pi kernel does not support mono audio out of the I2S interface, you can only play stereo,
so any mono audio files may need conversion to stereo!

Volume adjustment

Many programs like PyGame and Sonic Pi have volume control within the application. For other programs you can set
the volume using the command line tool called alsamixer. Just type alsamixer in and then use the up/down arrows to
set the volume. Press Escape once its set

omxplayer does not seem use the I2S interface for audio - only HDMI - so you won't be able to use it�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 22 of 43

http://learn.adafruit.com/playing-sounds-and-using-buttons-with-raspberry-pi

In Raspbian PIXEL you can set the volume using the menu item control. If it has an X through it, try restarting the Pi
(you have to restart twice after install to get PIXEL to recognize the volume control

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 23 of 43

Pi I2S Tweaks

Reducing popping

For people who followed our original installation instructions with the simple alsa config, they may find that the I2S
audio pops when playing new audio.

The workaround is to use a software mixer to output a fixed sample rate to the I2S device so the bit clock does not
change. I use ALSA so I configured dmixer and I no longer have any pops or clicks. Note that the RaspPi I2S driver
does not support dmixer by default and you must follow these instructions provided (https://adafru.it/sHF) to add it.
Continue on for step-by-step on how to enable it!

Step 1

Start by modify /boot/config.txt to add dtoverlay=i2s-mmap

Run sudo nano /boot/config.txt and add the text to the bottom like so:

Save and exit.

Then change /etc/asound.conf to:

This page is deprecated, our installer already performs these steps for you, but we'll keep them here for
archival use!�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 24 of 43

https://support.hifiberry.com/hc/en-us/articles/207397665-Mixing-different-audio-sources

pcm.speakerbonnet {
 type hw card 0
}

pcm.!default {
 type plug
 slave.pcm "dmixer"
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

By running sudo nano /etc/asound.conf

This creates a PCM device called speakerbonnet which is connected to the hardware I2S device. Then we make a
new 'dmix' device (type dmix) called pcm.dmixer . We give it a unique Inter Process Communication key (ipc_key
1024) and permissions that are world-read-writeable (ipc_perm 0666) The mixer will control the hardware pcm

device speakerbonnet (pcm "speakerbonnet") and has a buffer set up so its nice and fast. The communication buffer is
set up so there's no delays (period_time 0 , period_size 1024 and buffer_size 8192 work well). The default mixed

rate is 44.1khz stereo (rate 44100 channels 2)

Finally we set up a control interface but it ended up working best to just put in the hardware device here - ctl.dmixer {
type hw card 0 }

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 25 of 43

Save and exit. Then reboot the Pi to enable the mixer. Also, while it will greatly reduce popping, you still may get one
once in a while - especially when first playing audio!

Add software volume control

The basic I2S chipset used here does not have software control built in. So we have to 'trick' the Pi into creating a
software volume control. Luckily, its not hard once you know how to do it (https://adafru.it/ydQ).

Create a new audio config file in ~/.asoundrc with nano ~/.asoundrc and inside put the following text:

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 26 of 43

http://alsa.opensrc.org/How_to_use_softvol_to_control_the_master_volume

pcm.speakerbonnet {
 type hw card 0
}

pcm.dmixer {
 type dmix
 ipc_key 1024
 ipc_perm 0666
 slave {
 pcm "speakerbonnet"
 period_time 0
 period_size 1024
 buffer_size 8192
 rate 44100
 channels 2
 }
}

ctl.dmixer {
 type hw card 0
}

pcm.softvol {
 type softvol
 slave.pcm "dmixer"
 control.name "PCM"
 control.card 0
}

ctl.softvol {
 type hw card 0
}

pcm.!default {
 type plug
 slave.pcm "softvol"
}

This assumes you set up the dmixer for no-popping above!�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 27 of 43

Save and exit

Now, here's the trick, you have to reboot, then play some audio through alsa, then reboot to get the alsamixer to sync
up right:

speaker-test -c2 --test=wav -w /usr/share/sounds/alsa/Front_Center.wav

Then you can type alsamixer to control the volume with the 'classic' alsa mixing interface

Just press the up and down arrows to set the volume, and ESC to quit

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 28 of 43

Play Audio with
PyGame

You can use mpg123 for basic testing but it's a little clumsy for use where you want to dynamically change the volume
or have an interactive program. For more powerful audio playback we suggest using PyGame to playback a variety of
audio formats (MP3 included!)

Install PyGame

Start by installing pygame support, you'll need to open up a console on your Pi with network access and run:

sudo apt-get install python-pygame

Next, download this pygame example zip to your Pi

https://adafru.it/wbp

https://adafru.it/wbp

On the command line, run

wget https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip (https://adafru.it/wbq)

unzip pygame_example.zip (https://adafru.it/wbq)

Run Demo

Inside the zip is an example called pygameMP3.py

This example will playback all MP3's within the script's folder. To demonstrate that you can also adjust the volume
within pygame, the second argument is the volume for playback. Specify a volume to playback with a command line
argument between 0.0 and 1.0

For example here is how to play at 75% volume:

python pygameMP3.py 0.75

Here's the code if you have your own mp3s!

''' pg_midi_sound101.py
play midi music files (also mp3 files) using pygame
tested with Python273/331 and pygame192 by vegaseat
'''
#code modified by James DeVito from here: https://www.daniweb.com/programming/software-
development/code/454835/let-pygame-play-your-midi-or-mp3-files

#!/usr/bin/python

import sys
import pygame as pg

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 29 of 43

https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip?1493840708
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip
https://cdn-learn.adafruit.com/assets/assets/000/041/506/original/pygame_example.zip

import os
import time

def play_music(music_file):
 '''
 stream music with mixer.music module in blocking manner
 this will stream the sound from disk while playing
 '''
 clock = pg.time.Clock()
 try:
 pg.mixer.music.load(music_file)
 print("Music file {} loaded!".format(music_file))
 except pygame.error:
 print("File {} not found! {}".format(music_file, pg.get_error()))
 return

 pg.mixer.music.play()

 # If you want to fade in the audio...
 # for x in range(0,100):
 # pg.mixer.music.set_volume(float(x)/100.0)
 # time.sleep(.0075)
 # # check if playback has finished
 while pg.mixer.music.get_busy():
 clock.tick(30)

freq = 44100 # audio CD quality
bitsize = -16 # unsigned 16 bit
channels = 2 # 1 is mono, 2 is stereo
buffer = 2048 # number of samples (experiment to get right sound)
pg.mixer.init(freq, bitsize, channels, buffer)

if len(sys.argv) > 1:

 try:
 user_volume = float(sys.argv[1])
 except ValueError:
 print "Volume argument invalid. Please use a float (0.0 - 1.0)"
 pg.mixer.music.fadeout(1000)
 pg.mixer.music.stop()
 raise SystemExit

 print("Playing at volume: " + str(user_volume)+ "\n")
 pg.mixer.music.set_volume(user_volume)
 mp3s = []
 for file in os.listdir("."):
 if file.endswith(".mp3"):
 mp3s.append(file)

 print mp3s

 for x in mp3s:
 try:
 play_music(x)
 time.sleep(.25)
 except KeyboardInterrupt:
 # if user hits Ctrl/C then exit

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 30 of 43

 # if user hits Ctrl/C then exit
 # (works only in console mode)
 pg.mixer.music.fadeout(1000)
 pg.mixer.music.stop()
 raise SystemExit
else:
 print("Please specify volume as a float! (0.0 - 1.0)")

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 31 of 43

Arduino Wiring &
Test

The classic ATmega328P-based Arduino's like the UNO and Metro 328 don't have I2S interfaces, so you can't use this
breakout with them

But the newer ATSAMD21-based boards like the Zero, Metro M0, Feather M0 can! (Note, Gemma M0 & Trinket M0 do
not have I2S pins available). And so can the even newer ATSAMD51-based boards like the Metro M4 and Feather M4.

To use I2S with M0 or M4 boards, you'll need to install the Adafruit Zero I2S library (https://adafru.it/DHD). It is available
through the Library Manager. You can search for (see below) and then just click the install button.

Wiring

Wiring connections are the same as those used for CircuitPython. So go to the CircuitPython Wiring & Test page to
see how to wire the breakout for your specific board.

Basic Test

To test things out, try running the demo below. It comes with the library installation, so you can find it by going to:

File -> Examples -> Adafruit Zero I2S Library -> basic

Be sure to change this line:

Adafruit_ZeroI2S i2s(0, 1, 9, 2);

to match the pins used for your setup. If you've wired as shown in this guide, then you can try using the default pins by
changing that line to this:

Adafruit_ZeroI2S i2s;

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 32 of 43

https://github.com/adafruit/Adafruit_ZeroI2S

#include <Arduino.h>

#include <Adafruit_ZeroI2S.h>
#include <math.h>

/* max volume for 32 bit data */
#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */
#define BUFSIZE 128
int left[BUFSIZE];
int right[BUFSIZE];

Adafruit_ZeroI2S i2s(0, 1, 9, 2);

void setup()
{
 for(int i=0; i<BUFSIZE; i++){
 /* create a sine wave on the left channel */
 left[i] = sin((2*PI / (BUFSIZE)) * i) * VOLUME;

 /* create a cosine wave on the right channel */
 right[i] = cos((2*PI / (BUFSIZE)) * i) * VOLUME;
 }

 /* begin I2S on the default pins. 24 bit depth at
 * 44100 samples per second
 */
 i2s.begin(I2S_32_BIT, 44100);
 i2s.enableTx();
}

void loop()
{
 /* write the output buffers
 * note that i2s.write() will block until both channels are written.
 */
 for(int i=0; i<BUFSIZE; i++){
 i2s.write(left[i], right[i]);
 }
}

DMA Test

The basic test above created the output directly by using the i2s.write() function in a loop. Another approach is to use

DMA to generate the output. With this approach, you do some initial setup to configure the DMA engine for playback.
It can then take care of generating the output in the background allowing you to do other things in your code.

To take this approach, you will need to install the Zero DMA library (https://adafru.it/lnb). You can do that through the
Library Manager:

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 33 of 43

https://github.com/adafruit/Adafruit_ZeroDMA

And then you can use the DMA example found in the Zero I2S library:

File -> Examples -> Adafruit Zero I2S Library -> dma

#include <Adafruit_ZeroI2S.h>
#include <Adafruit_ZeroDMA.h>
#include "utility/dma.h"
#include <math.h>

/* max volume for 32 bit data */
#define VOLUME ((1UL << 31) - 1)

/* create a buffer for both the left and right channel data */
#define BUFSIZE 256
int data[BUFSIZE];

Adafruit_ZeroDMA myDMA;
ZeroDMAstatus stat; // DMA status codes returned by some functions

Adafruit_ZeroI2S i2s;

void dma_callback(Adafruit_ZeroDMA *dma) {
 /* we don't need to do anything here */
}

void setup()
{
 Serial.begin(115200);
 //while(!Serial); // Wait for Serial monitor before continuing

 Serial.println("I2S output via DMA");

 int *ptr = data;

 /*the I2S module will be expecting data interleaved LRLR*/
 for(int i=0; i<BUFSIZE/2; i++){
 /* create a sine wave on the left channel */
 *ptr++ = sin((2*PI / (BUFSIZE/2)) * i) * VOLUME;

 /* create a cosine wave on the right channel */
 *ptr++ = cos((2*PI / (BUFSIZE/2)) * i) * VOLUME;

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 34 of 43

 *ptr++ = cos((2*PI / (BUFSIZE/2)) * i) * VOLUME;
 }

 Serial.println("Configuring DMA trigger");
 myDMA.setTrigger(I2S_DMAC_ID_TX_0);
 myDMA.setAction(DMA_TRIGGER_ACTON_BEAT);

 Serial.print("Allocating DMA channel...");
 stat = myDMA.allocate();
 myDMA.printStatus(stat);

 Serial.println("Setting up transfer");
 myDMA.addDescriptor(
 data, // move data from here
#if defined(__SAMD51__)
 (void *)(&I2S->TXDATA.reg), // to here (M4)
#else
 (void *)(&I2S->DATA[0].reg), // to here (M0+)
#endif
 BUFSIZE, // this many...
 DMA_BEAT_SIZE_WORD, // bytes/hword/words
 true, // increment source addr?
 false);
 myDMA.loop(true);
 Serial.println("Adding callback");
 myDMA.setCallback(dma_callback);

 /* begin I2S on the default pins. 24 bit depth at
 * 44100 samples per second
 */
 i2s.begin(I2S_32_BIT, 44100);
 i2s.enableTx();

 stat = myDMA.startJob();
}

void loop()
{
 Serial.println("do other things here while your DMA runs in the background.");
 delay(2000);
}

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 35 of 43

CircuitPython Wiring &
Test

CircuitPython 3.0 and higher has I2S built in which means you can use this breakout super easily with the supported
M0 and M4 Express CircuitPython boards! Supported boards are Feather M0 Express, Feather M4 Express, Metro M0
Express, Metro M4 Express, and ItsyBitsy M0 Express.

Note that Trinket M0, Gemma M0 and ItsyBitsy M4 do not support I2S (the last one is not a typo!)

The M0 boards have multiple I2S pin combinations available. We're going to demonstrate a single pin combination for
each board.

Wiring

The following wiring diagrams show how to connect the UDA1334 breakout to your CircuitPython board. You'll be
using voltage in, ground, bit clock, word select and data pins.

VIN is the red wire.
GND is the black wire.
BCLK is the blue wire.
WSEL is the yellow wire.
DIN is the green wire.

For Feather M0 Express, ItsyBitsy M0 Express and

Metro M0 Express:

Connect VIN on the breakout to 3V/3.3 on the

board.

Connect GND on the breakout to G/GND on the

board.

Connect BCLK on the breakout to D1/TX on the

board.

Connect WSEL on the breakout to D0/RX on the

board.

Connect DIN on the breakout to D9 on the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 36 of 43

https://learn.adafruit.com/assets/57717

For Feather M4 Express:

Connect VIN on the breakout to 3V on the board.

Connect GND on the breakout to Gnd on the

board.

Connect BCLK on the breakout to TX on the

board.

Connect WSEL on the breakout to D10 on the

board.

Connect DIN on the breakout to D11 on the board.

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 37 of 43

https://learn.adafruit.com/assets/57719
https://learn.adafruit.com/assets/57720
https://learn.adafruit.com/assets/57721

For Metro M4 Express:

Connect VIN on the breakout to 3.3 on the board.

Connect GND on the breakout to GND on the

board.

Connect BCLK on the breakout to D3 on the

board.

Connect WSEL on the breakout to D9 on the

board.

Connect DIN on the breakout to D8 on the board.

Code Examples

We have two CircuitPython code examples. The first plays a generated tone through the audio jack on the breakout.
The second plays a wave file. Let's take a look!

Tone Generation

The first example generates one period of a sine wave and then loops it to generate a tone. You can change the
volume and the Hz of the tone by changing the associated variables. Inside the loop, we play the tone for one second
and stop it for one second.

The default volume of the audio in the following code is very high. Do put on plugged in headpones before
first running the code to check the volume.�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 38 of 43

https://learn.adafruit.com/assets/57722

import time
import array
import math
import audioio
import board
import audiobusio

tone_volume = 0.1 # Increase this to increase the volume of the tone.
frequency = 440 # Set this to the Hz of the tone you want to generate.
length = 8000 // frequency
sine_wave = array.array("h", [0] * length)
for i in range(length):
 sine_wave[i] = int((math.sin(math.pi * 2 * i / length)) * tone_volume * (2 ** 15 -1))

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express
audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)
For Feather M4 Express
audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)
For Metro M4 Express
audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)
sine_wave_sample = audioio.RawSample(sine_wave)

while True:
 audio.play(sine_wave_sample, loop=True)
 time.sleep(1)
 audio.stop()
 time.sleep(1)

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1, board.D0, board.D9) and uncomment

audio = audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1, board.D0, board.D9) and uncomment #
audio = audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear one second of a 440Hz tone, and one second of silence. Remember, listen for it without headphones
on your ears first as the volume is quite high.

You can try changing the Hz of the tone to produce different tones. Try changing the number of seconds in
time.sleep() to produce longer or shorter tones.

Wave File

The second example plays a wave file. We open the file in a readable format. Then inside the loop, we play the file
and tell the code to continue playing the file until it's completed. You can use any supported wave
file (https://adafru.it/BRj). We've included the wave file used in the code.

https://adafru.it/BTM

https://adafru.it/BTM

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 39 of 43

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out#play-a-wave-file
https://cdn-learn.adafruit.com/assets/assets/000/057/743/original/StreetChicken.wav?1532017169

import audioio
import board
import audiobusio

wave_file = open("StreetChicken.wav", "rb")
wave = audioio.WaveFile(wave_file)

For Feather M0 Express, ItsyBitsy M0 Express, Metro M0 Express
audio = audiobusio.I2SOut(board.D1, board.D0, board.D9)
For Feather M4 Express
audio = audiobusio.I2SOut(board.D1, board.D10, board.D11)
For Metro M4 Express
audio = audiobusio.I2SOut(board.D3, board.D9, board.D8)

while True:
 audio.play(wave)
 while audio.playing:
 pass

The object setup in the code is the same as above.

For Feather M0 Express, ItsyBitsy M0 Express and Metro M0 Express, no changes are needed for the code to work.

For Feather M4 Express, comment out audio = audiobusio.I2SOut(board.D1, board.D0, board.D9) and uncomment

audio = audiobusio.I2SOut(board.D1, board.D10, board.D11) .

For Metro M4 Express, comment out audio = audiobusio.I2SOut(board.D1, board.D0, board.D9) and uncomment #
audio = audiobusio.I2SOut(board.D3, board.D3, board.D8) .

Now you'll hear the wave file play through and loop. Remember, listen for it without headphones on your ears first as
the volume is quite high.

There's plenty you can do with this example. Try playing a different wave file, or, instead of including while
audio.playing: pass , include a time.sleep() to have it play for a specified number of seconds. Check out the Audio

Out page in the CircuitPython Essentials guide (https://adafru.it/BRj) for pause and resume features.

Where's my I2S?

We mentioned earlier that the supported M0 boards have multiple I2S pin combinations available to you. The M4
boards have one option. Either way, if you'd like to know what options are available to you, copy the following code
into your code.py, connect to the serial console, and check out the output.

These are the results from the ItsyBitsy M0 Express.

For more information about I2SOut, check out https://circuitpython.readthedocs.io/en/latest/shared-
bindings/audiobusio/I2SOut.html�

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 40 of 43

https://learn.adafruit.com/circuitpython-essentials/circuitpython-audio-out
https://circuitpython.readthedocs.io/en/latest/shared-bindings/audiobusio/I2SOut.html

import board
import audiobusio
from microcontroller import Pin

def is_hardware_i2s(bit_clock, word_select, data):
 try:
 p = audiobusio.I2SOut(bit_clock, word_select, data)
 p.deinit()
 return True
 except ValueError:
 return False

def get_unique_pins():
 exclude = ['NEOPIXEL', 'APA102_MOSI', 'APA102_SCK']
 pins = [pin for pin in [
 getattr(board, p) for p in dir(board) if p not in exclude]
 if isinstance(pin, Pin)]
 unique = []
 for p in pins:
 if p not in unique:
 unique.append(p)
 return unique

for bit_clock_pin in get_unique_pins():
 for word_select_pin in get_unique_pins():
 for data_pin in get_unique_pins():
 if bit_clock_pin is word_select_pin or bit_clock_pin is data_pin or word_select_pin\
 is data_pin:
 continue
 else:
 if is_hardware_i2s(bit_clock_pin, word_select_pin, data_pin):
 print("Bit clock pin:", bit_clock_pin, "\t Word select pin:", word_select_pin,
 "\t Data pin:", data_pin)
 else:
 pass

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 41 of 43

Downloads

Files

EagleCAD PCB Files (https://adafru.it/BtN)
Fritzing object in Adafruit Fritzing library (https://adafru.it/aP3)
UDA1334A Datasheet (https://adafru.it/BtO)

Schematic & Fabrication Print

© Adafruit Industries https://learn.adafruit.com/adafruit-i2s-stereo-decoder-uda1334a Page 42 of 43

https://github.com/adafruit/Adafruit-UDA1334A-I2S-Stereo-DAC-PCB
https://github.com/adafruit/Fritzing-Library
https://cdn-shop.adafruit.com/product-files/3678/UDA1334ATS.pdf

© Adafruit Industries Last Updated: 2020-04-14 05:16:44 PM EDT Page 43 of 43

	Guide Contents
	Overview
	Pinouts
	Power Pins
	I2S Pins
	Audio Outputs
	Optional Control Pins
	Assembly
	Installing Standard Headers
	Raspberry Pi Wiring
	Raspberry Pi Setup
	Fast Install
	Detailed Install
	Update /etc/modprobe.d (if it exists)
	Disable headphone audio (if it's set)
	Create asound.conf file
	Add Device Tree Overlay

	Raspberry Pi Test
	Speaker Tests!
	Simple white noise speaker test
	Simple WAV speaker test
	Simple MP3 speaker test

	Volume adjustment
	Pi I2S Tweaks
	Reducing popping
	Step 1

	Add software volume control
	Play Audio with PyGame
	Install PyGame
	Run Demo
	Arduino Wiring & Test
	Wiring
	Basic Test
	DMA Test

	CircuitPython Wiring & Test
	Wiring
	Code Examples
	Tone Generation
	Wave File
	Where's my I2S?

	Downloads
	Files
	Schematic & Fabrication Print

