MSC7110

Low-Cost DSP with DDR Controller

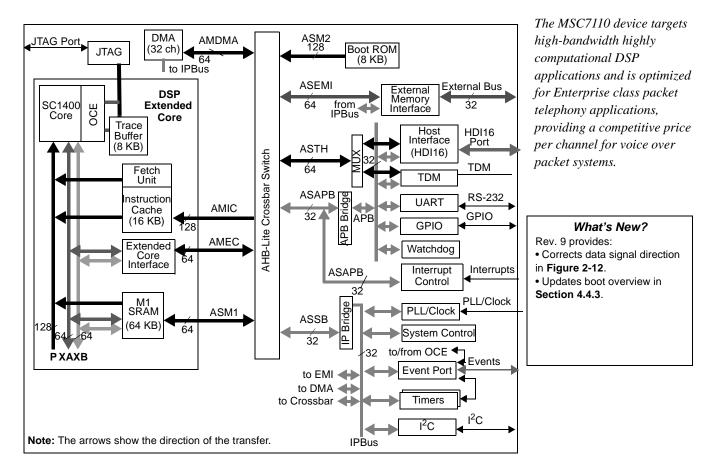


Figure 1. MSC7110 Block Diagram

The MSC7110 device is a highly integrated DSP processor that contains the StarCoreTM SC1400 core, 64 KB of SRAM memory, a 16 KB 16-way instruction cache, an 8 KB boot ROM, a 128-channel Time-Division Multiplexing (TDM) interface with hardware support for μ /A-law decoding/encoding, a UART, a 32-channel DMA controller, a 16-bit host interface (HDI16) to support an external host processor, a programmable interrupt controller (PIC), an I²C interface, two 16-bit quad cascadable timers, GPIO signals, and an on-chip emulator (OCE) and event port for enhanced debug and system integration capability. The SC1400 core has four ALUs and performs at 1000 DSP million multiply accumulates per second (MMACS) with an internal 266 MHz clock at 1.2 V.

Table of Contents

		Features	iii
		Product Documentation	viii
Chapter 1	Sign	als/Connections	
-	1.1	Power	1-4
	1.2	Ground	1-4
	1.3	Clock and Reset	1-4
	1.4	Memory Controller	1-5
	1.5	Multiplexed I/O Signal Ports A–D	1-6
	1.6	OCE Event and JTAG Test Access Port	1-17
	1.7	Reserved Signals	1-18
Chapter 2	Spec	cifications	
•	2.1	Maximum Ratings	2-1
	2.2	Recommended Operating Conditions	
	2.3	Thermal Characteristics	
	2.4	DC Electrical Characteristics	2-4
	2.5	AC Timings	2-5
Chapter 3	Pack	aging	
•	3.1	MAP-BGA Package	3-1
	3.2	MAP-BGA Package Mechanical Drawing	
Chapter 4	Desi	gn Considerations	
•	4.1	Thermal Design Considerations	4-1
	4.2	Power Supply Design Considerations	
	4.3	Estimated Power Usage Calculations	
	4.4	Reset and Boot	
	4.5	DDR Memory System Guidelines	4-8
	4.6	Connectivity Guidelines	
		•	

Data Sheet Conventions

OVERBAR Indicates a signal that is active when pulled low (For example, the RESET pin is active when low.)

"asserted" Means that a high true (active high) signal is high or that a low true (active low) signal is low "deasserted" Means that a high true (active high) signal is low or that a low true (active low) signal is high

Examples:	Signal/Symbol	Logic State	Signal State	Voltage
	PIN	True	Asserted	V_{IL}/V_{OL}
	PIN	False	Deasserted	V_{IH}/V_{OH}
	PIN	True	Asserted	V_{IH}/V_{OH}
	PIN	False	Deasserted	V_{IL}/V_{OL}

Note: Values for V_{IL} , V_{OL} , V_{IH} , and V_{OH} are defined by individual product specifications.

Features

Table 1 lists the features of the MSC7110 device.

Table 1. MSC7110 Features

Feature	Description				
StarCore SC1400 Core	 Up to 1000 MMACS using an internal 266 MHz clock at 1.2. A multiply-accumulate operation includes a multiply-add instruction with the associated data move and pointer update. 4 data ALUs. 16 data registers, 40 bits each. 27 address registers, 32 bits each. Hardware support for fractional and integer data types. Very rich 16-bit wide orthogonal instruction set. Up to six instructions executed in a single clock cycle. Variable-length execution set (VLES) that can be optimized for code density and performance. IEEE® Std. 1149.1™ JTAG port. On-Chip Emulator (OCE10) module with real-time debugging capabilities. 				
Extended Core	The high-performance extended core delivers up to 1000 MMACS using 4 ALUs running up to 266 MHz, including: SC1400 core processor. 64 KB multi-port SRAM (M1) accessed by the SC1400 core with no wait states. 16 KB, 16-way instruction cache (ICache). Programmable instruction fetch unit. Write buffer (4-entry). Extended core interface module.				
Internal Memory	The internal memory space totals 88 KB: • 64 KB of M1 memory. • 16 KB Instruction Cache. • 8 KB boot ROM accessible from the SC1400 core.				
External Memory Interface	DDR memory controller. Glueless interface to 133 MHz DDR-RAM. 14-bit external address bus supporting up to 1 GB of DDR memory. 16- or 32-bit external data bus. Memory controller supports: Byte enables for 32-bit external data bus. Data pipeline to reduce data set-up time for synchronous devices.				
IPBus	Programmable modules include: Crossbar switch. DMA controller. DDR controller. Ethernet MAC controller. Clock synthesis module. I ² C module. System control unit. Timers.				
Crossbar Switch	AHB-Lite crossbar switch, allowing parallel data transfers between four master ports and six slave ports, where each port connects to an AHB-Lite bus.				
DMA Controller	Multi-channel DMA controller: • Up to 32 time-multiplexed channels. • Priority-based time-multiplexing between channels using 32 internal priority levels • Priorities can be fixed or round-robin. • A flexible channel configuration: – All channels support all features. – All channels connect to the slave ports on the crossbar.				

Table 1. MSC7110 Features (Continued)

Feature	Description
External Interfaces	External interfaces and control modules managed on the advanced peripheral bus (APB) including: One 16-bit host interface (HDI16) One time-division multiplexing (TDM) module supporting up to 128 channels. Two 16-bit quad timers. RS-232 interface/universal asynchronous receiver/transmitter (UART). I ² C interface. General-purpose input/output (GPIO) signals. Interrupt controller to handle external interrupt functions (input and output). Event port.
Host Interface (HDI16)	Enhanced 16-bit wide interface provides a glueless connection to industry-standard microcontrollers, microprocessors, and DSPs. The HDI16 can also operate in 8-bit data bus mode and is fully compatible with the DSP56300 HDI08 bus from the external host side.
TDM Module	One TDM module with the following features: Totally independent receive and transmit, each having one data line, one clock line, and one frame sync line. Frame sync line and clock line can be shared between receive and transmit within a single TDM or across all TDMs. Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses. Hardware A-law/μ-law conversion Up to 50 Mbps per TDM (50 MHz bit clock). Maximum rate is 1/4 the core frequency. Up to 128 channels. Each channel can be programmed to be active or inactive. 8 - or 16-bit word widths. The TDM Sync Signals (TDMxTFS/TDMxRFS) can be configured as either input or output. The TDM Clock Signals (TDMxTCK/TDMxRCK) can be configured as either input or output. Frame sync and data signals can be programmed to be sampled either on the rising edge or on the falling edge of the clock. Frame sync can be programmed as active low or active high. Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame. MSB or LSB first support.
Timers	Two quad 16-bit timers, each with the following features: Cyclic or one-shot. Input clock polarity control. Interrupt request when counting reaches a programmed threshold. Pulse or level interrupts. Dynamically updated programmed threshold. Read counter any time. Maximum rate is 1/4 the core frequency.

Table 1. MSC7110 Features (Continued)

Feature	Description			
UART	 Two signals for transmit data and receive data. No clock, asynchronous mode. Full-duplex operation. Standard mark/space non-return-to-zero (NRZ) format. 13-bit baud rate selection. Programmable 8-bit or 9-bit data format. Separately enabled transmitter and receiver. Programmable transmitter output polarity. Two receiver wake-up methods: Idle line wake-up. Address mark wake-up. Separate receiver and transmitter interrupt requests. Eight flags, the first five can generate interrupt request: Transmitter empty. Transmission complete. Receiver full. Idle receiver input. Receiver overrun. Noise error. Framing error. Parity error. Receiver framing error detection. Hardware parity checking. 1/16 bit-time noise detection. Maximum bit rate 5.0 Mbps. Single-wire and loop operations. 			
I ² C Port	 2-wire serial interface through GPIO. Filtered inputs for noise suppression. Compatibility with I²C bus standard up to 400 kbps. Bidirectional Data Transfer Protocol. Multiple-master operation that also allows any number of devices implementing the I²C-master software module to access the memory simultaneously at boot or any time. Compatible with the I²C-serial EEPROM access protocol, allowing memory access of up to one MB. 			
General-Purpose I/O (GPIO) Port				
Programmable Interrupt Controller (PIC)	Consolidates maskable interrupt and non-maskable interrupt sources.			
Event Port	 Collects important signal devices. Programmable combinations to provide triggering to internal device units including interrupts, breakpoints, or wake-up from low-power stop mode. Lines can be configured to operate independently, be sequenced, or be enabled from an external source. Can be used independently or with the OCE10 debug module. 			
System Control	 Reset controller. Clock controller module. Hardware bus monitors for the MSC7110 buses. Software watchdog timer function. fieldBIST™ hardware health diagnostics that can be invoked at power-up or off-line via software. 			
Internal PLL	Generates up to 266 MHz clock for the SC1400 core and up to 133 MHz for the crossbar switch, DMA channels, M2 memory, and other peripherals.			
Clock Synthesis Module	 Programmable low-power Stop and Wait modes. Generation of all device clocks. Halt and restart capability for on-chip peripherals. 			
Reduced Power Dissipation	Separate power supply for internal logic and I/O. Low-power standby modes. Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-dependent).			

Table 1. MSC7110 Features (Continued)

Feature	Description					
fieldBIST Hardware Diagnostics	Detects and provides visibility into unlikely field failures for systems with high availability. The Freescale unique fieldBIST ensures that the device: • Has structural integrity. • Operates at the rated speed. • Is free from reliability defects. Diagnostics can report partial or complete device inoperability. fieldBIST resolution can pinpoint the following uniquely: • 6 memory blocks, including ROM. • 3 logic levels (top, extended core, and peripherals). • 1 PLL. Simple JTAG interface allows easy integration to system firmware.					
Packaging	400 ball MAP-BGA. • 17 × 17 mm. • 0.8 mm pitch. • Pb-bearing or Pb-free packaging technology.					
Software Support	Real-time operating systems (RTOS) that fully supports MSC7110 device architecture (multi-core, memory hierarchy, ICache, timers, DMA, interrupts, peripherals): High-performance and deterministic, delivering predictive response time. Optimized to provide low interrupt latency with high data throughput. Preemptive and priority-based multitasking. Fully interrupt/event driven. Small memory footprint. Comprehensive set of APIs. Fully supports MSC7110 DMA, interrupts, and timer schemes. Distributed system support, enables transparent inter-task communications: Messaging mechanism between tasks using mailboxes and semaphores. Networking support; data transfer between tasks running inside and outside the device using networking protocols. Includes integrated device drivers for such peripherals as TDM, UART, and external buses. Additional features: Incorporates task debugging utilities integrated with compilers and vendors. Board support package (BSP) for MSC711xADS. CodeWarrior® Integrated Development Environment (IDE): C/C++ compiler with in-line assembly. Enables the developer to generate highly optimized DSP code. It translates code written in C/C++ into parallel fetch sets and maintains high code density. SC1400 Core Simulator. Allows the user to run test code to emulate operation on the SC1400 core processor. Librarian. Enables the user to create libraries for modularity. C libraries. A collection of C/C++ functions for the developer's use. Lichker. Highly efficient linker to produce executables from object code. Debugger. Seamlessly integrated real-time, non-intrusive multi-mode debugger that enables debugging of highly optimized DSP algorithms. The developer can choose to debug in source code, assembly code, or mixed mode. Profiler. An analysis tool using a patented binary code instrumentation (BCI) technique that enables the developer to identify program design inefficiencies. Boot options: HD116. PC. PLL on or off during boot.					
MetroWerks Application Development System (ADS) Board	Host debug through single JTAG connector supports both processors. Two kinds of ADS configurations: one with the MSC7116 as the host CPU and one without a host CPU. Big Flash memory for stand-alone applications. Support for the following communications ports: - 10/100Base-T T1/E1 TDM interface H.110. Voice codec RS-232. High-density (MICTOR) logic analyzer connectors to monitor MSC7110 signals - 6U cPCI form factor.					

vi Freescale Semiconductor

Table 1. MSC7110 Features (Continued)

Feature	Description
Evaluation Module (EVM) Kits	 MSC7116 device. Single 32-bit DDR memory. 256 KB I²C EEPROM to boot the MSC7116 device. OCE10 emulator/JTAG connector for debugging. On-board 5 V power supply. External power supply and cables. Kit documentation. Power indicators for 2.5 V, 3.3 V, and 5 V. Hard-reset push-button to reset the MSC7116 device. Support for the following communications ports: – HDI16 host port interface header. – 10/100Base-T (RJ-45). – T1/E1 TDM interface header. – 16-bit audio codec (3.5 mm jacks). – RS-232 (UART port). – Output header for timers, interrupts, and GPIOs. Software support: – MSC711xEVM includes full-featured CodeWarrior Development Studio for MSC711x. – MSC711xEVMT includes evaluation copy of CodeWarrior Development Studio for MSC711x.

Product Documentation

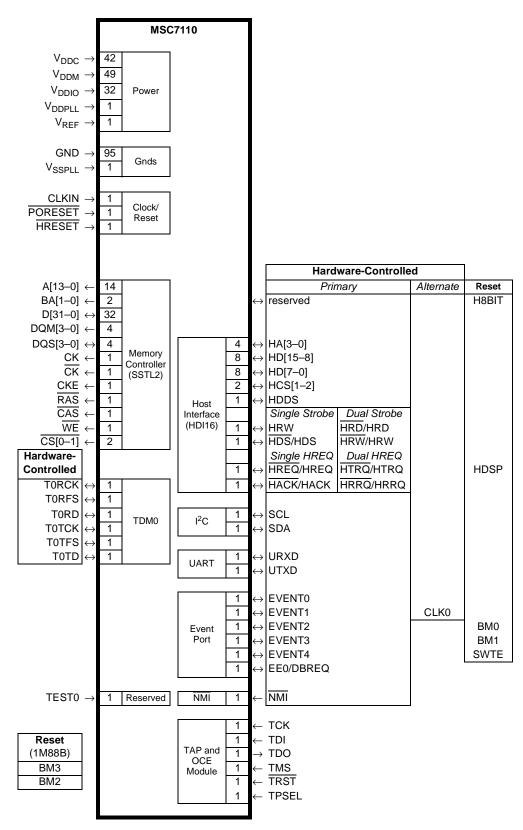
The documents listed in **Table 2** are required for a complete description of the MSC7110 device and are necessary to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation updates, visit the Freescale DSP website. See the contact information on the back cover of this document.

Table 2. MSC7110 Documentation

Name	Description	Order Number
MSC7110 Technical Data	MSC7110 features list and physical, electrical, timing, and package specifications	MSC7110
MSC711x Reference Manual	Detailed functional description of memory and peripheral configuration, operation, and register programming	MSC711xRM
SC1000-Family Processor Core Reference Manual	Detailed description of the SC1000 family processor cores, including the SC1400, and instruction set	10180 See the StarCore LLC website at www.starcore-dsp.com
OCE10 On-Chip Emulator Reference Manual	Detailed description of the SC1000 family on-chip emulator.	10055 See the StarCore LLC website at www.starcore-dsp.com
Differences Between the 1L44X and 1M88B Mask Sets of the MSC711x DSPs	Describes the functional differences between the MSC711x device mask sets.	EB648
Application Notes	Documents describing specific applications or optimized device operation including code examples	See the MSC7110 product website

Signals/Connections

1


The MSC7110 external signals are organized into functional groups. **Table 1-1** lists the functional groups and the number of signal connections in each group, and it references the table that lists multiplexed signals within each group.

Most MSC7110 external peripherals are configured through Ports A–D. The port configuration registers allow signal lines to be configured as software-controlled or hardware-controlled. If a signal is configured as software-controlled, it can be further defined as an input or an output. For port A, some signals configured as inputs may be configured as general-purpose signals or as maskable interrupt lines. If a signal is configured as hardware-controlled, it has a special function supporting one of the peripheral interfaces (for example, the HDI16). Some signals can also have an alternate hardware function (such as the CLKO signal). **Figure 1-1** shows the MSC7110 external signals organized by hardware-controlled function. **Figure 1-2** shows the configuration combinations for signals enabled through ports A–D.

Table 1-1. MSC7110 Functional Signal Groupings

Functional Group	Number of Signal Connections	Detailed Description
Power	125	Table 1-2 on page 1-4.
Ground	96	Table 1-3 on page 1-4.
Clock and Reset	3	Table 1-4 on page 1-4.
Memory Controller	64	Table 1-5 on page 1-5
Signals Configured through ports A–D: • TDM0 • Host Interface (HDI16) • I ² C Interface • UART Interface • Event port • Boot mode (BM[3–2]) for mask set 1M88B only • GPIO/IRQ only (port A[0–5, 19–29] and port D[4–6]) • HDI16 Configuration (H8BIT) • Non-maskable interrupt (NMI) Note: Signals are grouped by the principal function, but individual signal lines have alternate functions. For example, there are a total possible 42 GPIOs for mask set 1L44X or 46 GPIOs for mask set 1M88B, but only 17 lines have this as the principal function. See Section 1.5 for details.	6 27 2 2 5 2 17 1	Table 1-6 on page 1-7 Table 1-7 on page 1-8 Table 1-8 on page 1-11 Table 1-9 on page 1-11 Table 1-10 on page 1-12 Table 1-11 on page 1-13 Table 1-12 on page 1-14 Table 1-13 on page 1-17 Table 1-14 on page 1-17
Debugging (JTAG Test Access Port and OCE module)	7	Table 1-15 on page 1-17
Reserved	1	Table 1-16 on page 1-18
No connect (NC)	40	Do not connect any line, component, trace, or via to these pins.

Note: Although the package for this device uses ball connections, the connections are sometimes conventionally referred to as pins.

Note: For software-controlled functionality, see Figure 1-2. This figure does not include the 40 NC pins.

Figure 1-1. MSC7110 External Signals (Hardware-Controlled Functions)

	Softwar	re Controlled (GPxCTL[x] = 0)		Н	ardware Cor	ntrolled (GPxCTL[x] =	1)		Beest
Port Signal	GPI (Default) GPxDDR[x] = 0 GPA_INTEN[x] = 0	Interrupt GPxDDR[x] = 0 GPA_INTEN[x] = 1	GPO GPxDDR[x] = 1	Primary Function CHPCFG[PAS] and CHPCFG[PDS] = 0			Alternate F CHPCFG[F CHPCFG[F	PAS] = 1	Reset Configuration (sampled at deassertion of PORESET only)	
PA29	GPIA29	IRQ18	GPOA29	reserved				reserved		
PA28	GPIA28	IRQ17	GPOA28	reserved				reserved		
PA27	GPIA27	IRQ16	GPOA26	reserved				reserved		
PA26 PA25	GPIA26	IRQ26 IRQ25	GPOA26 GPOA25	reserved						
PA25 PA24	GPIA25 GPIA24	IRQ25 IRQ24	GPOA25 GPOA24	reserved reserved				H		
PA23	GPIA23	IRQ23	GPOA23	reserved				=		-
PA22	GPIA22	IRQ22	GPOA22	reserved				1		
PA21	GPIA21	IRQ21	GPOA21	reserved						
PA20	GPIA20	IRQ20	GPOA20	reserved						
PA19	GPIA19	IRQ19	GPOA19	reserved						
PA18	reserved	NMI	reserved		Event				Clock	
PA17	GPIA17	IRQ13	GPOA17		EVNT1	-0-	1		CLKO	
PA16	GPIA16	IRQ12	GPOA16		EVNT4	I ² C				SWTE
PA15 PA14	GPIA15 GPIA14	IRQ14 IRQ15	GPOA14			SCL SDA	UART			
PA14 PA13	GPIA14 GPIA13	IRQ15 IRQ2	GPOA14 GPOA13	_		SDA	URXD	H		
PA12	GPIA13 GPIA12	IRQ3	GPOA13	=		TDM0	UTXD	=		-
PA11	GPIA12	IRQ4	GPOA11	H		TORCK	0.70	H		1
PA10	GPIA10	IRQ5	GPOA10	Ĭ		TORFS		Í		1
PA9	GPIA9	reserved	GPOA9			T0RD				
PA8	GPIA8	IRQ6	GPOA8			T0TCK				
PA7	GPIA7	IRQ7	GPOA7			T0TFS				
PA6	GPIA6	reserved	GPOA6			T0TD				
PA5	GPIA5	IRQ0	GPOA5				reserved			
PA4	GPIA4	IRQ1	GPOA4				reserved	4		_
PA3 PA2	GPIA3 GPIA2	IRQ8 IRQ9	GPOA3 GPOA2	4			reserved reserved	4		4
PA1	GPIA2 GPIA1	IRQ10	GPOA2 GPOA1	_			reserved	+		_
PA0	GPIA0	IRQ10	GPOA1	=			reserved	=		-
17.0	0		0. 0.10	-			HDI16	Ħ		
PB14	reserved		reserved				HDDS			
PB13	reserved		reserved				HDS or HWR			
PB12	reserved		reserved				HRW or HRD			
PB11	GPIB11 ¹		GPOB11 ¹				HCS2			
PB10	reserved		reserved				HCS1			
PB9	reserved		reserved				HACK or HRRQ HREQ or HTRQ			LIDOD
PB8 PB7	reserved reserved		reserved reserved	4			HREQ OF HTRQ HD7			HDSP
PB6	reserved		reserved				HD6			_
PB5	reserved		reserved				HD5	1		
PB4	reserved		reserved				HD4			
PB3	reserved		reserved				HD3	Ī		
PB2	reserved		reserved				HD2			
PB1	reserved		reserved				HD1			
PB0	reserved		reserved		E) () ITO		HD0			5.44
PC15	GPIC15		GPOC14		EVNT3					BM1
PC14 PC13	GPIC14 reserved		GPOC14 reserved	H	EVNT2 EVNT0			H		BM0
1 013	16361760		16361760	H	EE0/			H		†
PC12	reserved		reserved		DBREQ					
PC11	GPIC11 ¹		GPOC11 ¹				HA3			
PC10	reserved		reserved	4			HA2	∐ .		1
PC9	reserved		reserved	4			HA1	∐ .		1
PC8	reserved		reserved	H	1		HA0	H		4
PC7 PC6	GPIC7 GPIC6		GPOC7 GPOC6	H			HD15 HD14	H		-
PC6 PC5	GPIC5		GPOC5	+			HD13	H		1
PC4	GPIC4		GPOC3	H			HD13	Ħ		1
PC3	GPIC3		GPOC3	Ĭ	1		HD11	Í		1
PC2	GPIC2		GPOC2				HD10	Ī]
PC1	GPIC1		GPOC1				HD9			
PC0	GPIC0		GPOC0	Ц	1		HD8	Ц		1 _
PD8	GPID8 ¹		GPOD8 ¹	4	1		·	4		BM3 ²
PD7	GPID7 ¹		GPOD7 ¹	Η .				4		BM2 ²
PD6	GPID6		GPOD6	reserved				reserved		4
PD5 PD4	GPID5 GPID4		GPOD5 GPOD4	reserved reserved	1			reserved reserved		-
F D4	-		reserved	reserved				ieseived	ı	H8BIT
PD2	reserved									

Figure 1-2. Port A–D Signal Configuration Diagram

1.1 Power

Table 1-2. Power Inputs

Signal Name	Description			
V _{DDC}	Internal Logic Power A dedicated well-regulated power source for the device core. Provide an extremely low impedance path to the V _{DDC} power rail.			
V_{DDM}	SSTL IO Driver Power A dedicated power source for the DDR DRAM interface buffers. Provide adequate external decoupling capacitors.			
V _{DDIO}	Input/Output Power The power source for the I/O buffers. Provide adequate external decoupling capacitors.			
V _{DDPLL}	System PLL Power A dedicated well-regulated power for the system Phase Lock Loop (PLL). Provide an extremely low impedance path to the V _{DDPLL} power rail.			
V _{REF}	SSTL Reference Power A reference power level for the SSTL2 memory interface.			

1.2 Ground

Table 1-3. Ground Connections

Signal Name	Description
GND	System Ground An isolated common ground for the internal processing logic, I/O buffers, and the DDR DRAM interface buffers. Provide adequate external decoupling capacitors.
V _{SSPLL}	System PLL Ground An isolated ground for the system PLL. Provide an extremely low-impedance path to this ground.

1.3 Clock and Reset

Table 1-4. Clock and Reset Pin Definitions

Signal Name	Туре	Description
CLKIN	Input	Input Clock Provides the primary clock source for the device.
PORESET	Input	Power-On Reset When asserted, this line causes the MSC7110 device to enter the power-on reset state.
HRESET	Input/ Output	Hard Reset When asserted, this open-drain line causes the MSC7110 to enter the hard reset state. Note: Connect an external pull-up to this pin.

1.4 Memory Controller

Refer to the memory controller chapter in the *MSC711x Reference Manual* for details on configuring these signals. To support DDR DRAM external memory, the memory controller uses SSTL2+ signal levels.

Table 1-5. Memory Controller Signals

Signal Name	Туре	Description
A[13-0]	Output	Address Bus The memory interface address bus used to connect to external memory devices.
BA[1-0]	Output	Bank Address Selects the DDR DRAM bank.
D[31-0]	Input/ Output	Data Bus The MSC7015 device drives the bus during write cycles and the external memory drives the bus during read cycles.
DQM[3-0]	Output	DDR DRAM DQM Selects the specific byte lanes for DDR DRAM devices.
DQS[3-0]	Input/Output	DDR DRAM DQS Strobe for byte-lane data capture.
СК	Output	System Clock Out The system bus clock.
CK	Output	System Clock Out Inverted The inverted system bus clock.
CKE	Output	Clock Enable When asserted, this signal enables the system bus clock for the DDR DRAM.
RAS	Output	Row Address Strobe Connects to DDR DRAM RAS input.
CAS	Output	Column Address Strobe Connects to DDR DRAM CAS input.
WE	Output	Write Enable Connects to DDR DRAM WE input.
CS[0-1]	Output	Chip Select 0–1 Enables specific memory devices or peripherals connected to the bus.

Note: The address and data bit ordering for the MSC7110 device differs from the MSC810x ordering. For the MSC7110 device, bit 0 is the least significant bit.

1.5 Multiplexed I/O Signal Ports A-D

Most MSC7110 I/O signals are multiplexed through ports A–D as shown in **Figure 1-2**. The function of the signals in this category depend on when the signals are used and how they are configured:

- Some configuration signals lines are sampled when the PORESET signal is deasserted. Pulling these signals up or down at reset configures specific aspects of device operation after reset.
- After reset, individual signals are defined by the settings of the Port Configuration Registers, with the following constraints:
 - Although the four port control registers are 32 bits wide, not all possible signal lines are implemented. The four ports support the following number of signal lines:
 - Port A supports 30 multiplexed signals.
 - Port B supports 15 multiplexed signals.
 - Port C supports 16 multiplexed signals.
 - Port D supports 4 multiplexed signals for mask set 1L44X and 6 multiplexed signals for mask set 1M88B.
 - The default configuration after reset for all port signals is software-controlled, general-purpose input (GPI), but this functionality is not implemented for all signals lines. Signal lines that cannot be defined as GPI are reserved. The four ports support the following number GPI signals:
 - Port A supports 29 GPI signals.
 - Port B does not support GPI signals for mask set 1L44x but supports 1 GPI signal for mask set 1M88B.
 - Port C supports 10 GPI signals for mask set 1L44X and 11 GPI signals for mask set 1M88B.
 - Port D supports 3 GPI signals for mask set 1L44X and 5 GPI signals for mask set 1M88B.
 - Port A supports 27 maskable interrupts (IRQ[0–26]) and 1 non-maskable interrupt (NMI) inputs. The NMI input line can only be used for this purpose and cannot be configured as any other signal. If the lines are configured as interrupt inputs through the Port A Interrupt Enable Register, they are not available for the other functions.
 - Leaving the port configuration for a signal line as software-controlled and changing the data direction to output changes the signal to a general-purpose output (GPO). Selecting this configuration for a port A signal disables the associated interrupt function if enabled by the Port A Interrupt Enable Register. The four ports support the following number of GPO signals:
 - Port A supports 29 GPO signals.
 - Port B does not support GPO signals for mask set 1L44X but supports 1 GPO signal for mask set 1M88B.
 - Port C supports 10 GPO signals for mask set 1L44X and 11 GPO signals for mask set 1M88B.
 - Port D supports 3 GPO signals for mask set 1L44X and 5 GPO signals for mask set 1M88B.
- Changing the port configuration for a signal to hardware-controlled changes the signal functionality to the hardware-controlled function. For port A signals, this configuration also disables any associated interrupt function. The hardware-controlled function defines the individual signal for one of the supported interfaces, including TDM0, the host interface (HDI16), I²C interface, UART (RS-232) interface, or the event port. For proper operation, all the required signals in a specified interface must be enabled through the port registers and configured correctly through the individual interface configuration registers.
- Ports A and D also have an alternate function for some signals. The ports must be configured as hardware-controlled and the PAS and PDS bits in the CHPCFG register must be set to select the alternate functionality. The alternate signal is the clock output signal. Selecting the alternate function disables the specific signals used by the primary hardware-controlled function.

Note: Refer to the *MSC711x Reference Manual* for details on configuring these signals.

The following subsections describe the individual interfaces supported by the hardware-controlled options and indicate the other signals that are multiplexed with the supported signals.

1.5.1 TDM0 Interface

Table 1-6. TDM0 Interface Signals

Pin	Туре	Description
GPIA11	Input	General-Purpose Input A11 (default) When configured through port A bit 11, performs as a general-purpose input.
ĪRQ4	Input	Interrupt Request 4 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA11	Output	General-Purpose Output A11 When configured through port A bit 11, performs as a general-purpose output.
TORCK	Input/Output	TDM0 Receive Clock The receive clock for TDM0. See the MSC711x Reference Manual for operation details.
GPIA10	Input	General-Purpose Input A10 (default) When configured through port A bit 10, performs as a general-purpose input.
ĪRQ5	Input	Interrupt Request 5 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA10	Output	General-Purpose Output A10 When configured through port A bit 10, performs as a general-purpose output.
TORFS	Input/Output	TDM0 Receive Frame Sync The receive frame sync for TDM0. See the MSC711x Reference Manual for operation details.
GPIA9	Input	General-Purpose Input A9 (default) When configured through port A bit 9, performs as a general-purpose input.
GPOA9	Output	General-Purpose Output A9 When configured through port A bit 9, performs as a general-purpose output.
TORD	Input/Output	TDM0 Receive Data The receive data for TDM0. See the MSC711x Reference Manual for operation details.
GPIA8	Input	General-Purpose Input A8 (default) When configured through port A bit 8, performs as a general-purpose input.
ĪRQ6	Input	Interrupt Request 6 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA8	Output	General-Purpose Output A8 When configured through port A bit 8, performs as a general-purpose output.
тотск	Input/Output	TDM0 Transmit Clock The transmit clock for TDM0. See the MSC711x Reference Manual for operation details.

Table 1-6. TDM0 Interface Signals (Continued)

Pin	Туре	Description
GPIA7	Input	General-Purpose Input A7 (default) When configured through port A bit 7, performs as a general-purpose input.
ĪRQ7	Input	Interrupt Request 7 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA7	Output	General-Purpose Output A7 When configured through port A bit 7, performs as a general-purpose output.
TOTFS	Input/Output	TDM0 Transmit Frame Sync The transmit frame sync for TDM0. See the MSC711x Reference Manual for operation details.
GPIA6	Input	General-Purpose Input A9 (default) When configured through port A bit 6, performs as a general-purpose input.
GPOA6	Output	General-Purpose Output A6 When configured through port A bit 6, performs as a general-purpose output.
TOTD	Input/Output	TDM0 Transmit Data The transmit data for TDM0. See the MSC711x Reference Manual for operation details.

1.5.2 Host Interface Port

Table 1-7. Host Interface Signals

Pin	Data Flow	Description
Reserved or GPIC11	Input	Reserved C11 or General-Purpose Input C11 (default) When configured through port C bit 11, a reserved signal (mask set 1L44X) or a general-purpose input (mask set 1M88B).
Reserved or GPOC11	Output	Reserved C11 or General-Purpose Output C11 When configured through port C bit 11, a reserved signal (mask set 1L44X) or a general-purpose output (mask set 1M88B).
НАЗ	Input	Host Address 3 Host address line 3. Tie this signal to ground.
Reserved	Input	Reserved C10–C8 (default) When configured through port C bits 10–8, reserved signals.
HA[2-0]	Input	Host Address 2–0 Host address bus. See the MSC711x Reference Manual for operation details.
GPIC[7-0]	Input	General-Purpose Inputs C7–C0 (default) When configured through port C bits 7–0, perform as a general-purpose inputs.
GPOC[7-0]	Output	General-Purpose Outputs C7–C0 When configured through port C bits 7–0, perform as a general-purpose outputs.
HD[15-8]	Input/Output	Host Data Bus (Upper Half) The host data bus is used to access the internal host registers. See the MSC711x Reference Manual for operation details.
Reserved	Input	Reserved B7–B0 (default) When configured through port B bits 7–0, reserved signals.
HD[7-0]	Input/Output	Host Data Bus (Lower Half) The host data bus is used to access the internal host registers. See the MSC711x Reference Manual for operation details.

1-8 Freescale Semiconductor

 Table 1-7.
 Host Interface Signals (Continued)

Pin	Data Flow	Description
Reserved	Input	Reserved B10 (default) When configured through port B bit 10, reserved signal.
HCS1/HCS1	Input	Host Chip Select 1 When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity of this pin is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2 with appropriate polarity.
Reserved or GPIB11	Input	Reserved B11 or General-Purpose Input B11 (default) When configured through port B bit 11, a reserved signal (mask set 1L44X) or a general-purpose input (mask set 1M88B).
Reserved or GPOB11	Output	Reserved B11 or General-Purpose Output B11 When configured through port B bit 11, a reserved signal (mask set 1L44X) or a general-purpose output (mask set 1M88B).
HCS2/HCS2	Input	Host Chip Select 2 When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity of this pin is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2 with appropriate polarity.
Reserved	Input	Reserved B12 (default) When configured through port B bit 12, reserved signal.
HRW	Input	Host Read Write When HDI16 is configured to work in single strobe mode, this is the Read/Write input (HRW).
HRD/HRD	Input	Host Read Data Strobe When HDI16 is programmed to interface a double data strobe host bus, this pin is the Read Data Strobe input (HRD). The polarity of the data strobe is programmable.
Reserved	Input	Reserved B13 (default) When configured through port B bit 13, reserved signal.
HDS/HDS	Input	Host Data Strobe When the HDI16 is programmed to interface a single data strobe host bus, this pin is the Data Strobe input (HDS). The polarity of the data strobe is programmable.
HWR/HWR	Input	Host Write Data Strobe When the HDI16 is programmed to interface a double data strobe host bus, this pin is the Write Data Strobe input (HWR). The polarity of the data strobe is programmable.
Reserved	Input	Reserved B14 (default) When configured through port B bit 14, reserved signal.
HDDS	Input	Host Dual Data Strobe When the HDI16 is enabled, this pin indicates whether to use Single or Dual Data Strobe mode.

Signals/Connections

 Table 1-7.
 Host Interface Signals (Continued)

Pin	Data Flow	Description
Reserved	Input	Reserved B8 (default) When configured through port B bit 8, reserved signal.
HREQ/HREQ	Output	Host Request When the HDI16 is programmed to interface a single host request host bus, this pin is the Host Request output (HREQ). The polarity of the host request is programmable. The host request may be programmed as a driven or open-drain output. When configured for open drain, an external pull-up must be used on this pin.
HTRQ/HTRQ	Output	Host Transmit Request When the HDI16 is programmed to interface a double host request host bus, this pin is the Transmit Host Request output (HTRQ). The polarity of the host request is programmable. The host request may be programmed as a driven or open-drain output. When configured for open drain, an external pull-up must be used on this pin.
HDSP	Input	Host Data Strobe Polarity This pin is sampled at the deassertion of PORESET. This pin defines the polarity of host port readwrite strobes.
Reserved	Input	Reserved B9 (default) When configured through port B bit 9, reserved signal.
ПАСК /НАСК	Input	Host Acknowledge When the HDI16 is programmed to interface a single host request host bus, this pin is the Host Acknowledge input (HACK). The polarity of the host acknowledge is programmable.
HRRQ/HRRQ	Output	Host Receive Request When the HDI16 is programmed to interface a double host request host bus, this pin is the Receive Host Request output (HRRQ). The polarity of the host request is programmable. The host request may be programmed as a driven or open-drain output.

1.5.3 I²C Port

Table 1-8. I²C Signals

Pin	Data Flow	Description
GPIA15	Input	General-Purpose Input A15 (default) When configured through port A bit 15, performs as a general-purpose input.
ĪRQ14	Input	Interrupt Request 14 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA15	Output	General-Purpose Output A15 When configured through port A bit 15, performs as a general-purpose output.
SCL	Input/Output	I ² C Clock The I ² C clock signal. When used for I ² C, use an external pull-up on this pin. See the <i>MSC711x Reference Manual</i> for operation details.
GPIA14	Input	General-Purpose Input A14 (default) When configured through port A bit 14, performs as a general-purpose input.
ĪRQ15	Input	Interrupt Request 15 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA14	Output	General-Purpose Output A14 When configured through port A bit 14, performs as a general-purpose output.
SDA	Input/Output	I^2C Data I^2C data signal. For I^2C , use an external pull-up on this pin. See the MSC711x Reference Manual for operation details.

1.5.4 UART Port

Table 1-9. UART Signals

Pin	Data Flow	Description
GPIA13	Input	General-Purpose Input A13 (default) When configured through port A bit 13, performs as a general-purpose input.
ĪRQ2	Input	Interrupt Request 2 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA13	Output	General-Purpose Output A13 When configured through port A bit 13, performs as a general-purpose output.
URXD	Input	UART Receive Data UART receive data line.
GPIA12	Input	General-Purpose Input A12 (default) When configured through port A bit 12, performs as a general-purpose input.
ĪRQ3	Input	Interrupt Request 3 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA12	Output	General-Purpose Output A12 When configured through port A bit 12, performs as a general-purpose output.
UTXD	Output	UART Transmit Data UART transmit data line.

1.5.5 Event Port

 Table 1-10.
 Event Port Signals

Pin	Data Flow	Description
Reserved	Input	Reserved PC13 (default) When configured through port C bit 13, reserved signal.
EVNT0	Input/ Output	Event 0 Provides input and output events to the System Control unit event multiplexers.
GPIA17	Input	General-Purpose Input A17 (default) When configured through port A bit 17, performs as a general-purpose input.
ĪRQ13	Input	Interrupt Request 13 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA17	Output	General-Purpose Output A17 When configured through port A bit 17, performs as a general-purpose output.
EVNT1	Input/ Output	Event 1 Provides input and output events to the system control unit event multiplexers.
CLKO	Output	CLKO Output clock signal when the function is enabled.
GPIC14	Input	General-Purpose Input C14 (default) When configured through port C bit 14, performs as a general-purpose input.
GPOC14	Output	General-Purpose Output C14 When configured through port C bit 14, performs as a general-purpose output.
EVNT2	Input/ Output	Event 2 Provides input and output events to the system control unit event multiplexers.
ВМ0	Input	Boot Mode 0 This pin is sampled at the deassertion of PORESET. With BM1, the value of this signal defines the boot mode of the MSC7110. See the MSC711x Reference Manual for operation details.
GPIC15	Input	General-Purpose Input C15 (default) When configured through port C bit 15, performs as a general-purpose input.
GPOC15	Output	General-Purpose Output C15 When configured through port C bit 15, performs as a general-purpose output.
EVNT3	Input/ Output	Event 3 Provides input and output events to the system control unit event multiplexers.
BM1	Input	Boot Mode 1 This pin is sampled at the deassertion of PORESET. With BM0, the value of this signal defines the boot mode of the MSC7110. See the MSC711x Reference Manual for operation details.

1-12 Freescale Semiconductor

 Table 1-10.
 Event Port Signals

Pin	Data Flow	Description
GPIA16	Input	General-Purpose Input A16 (default) When configured through port A bit 16, performs as a general-purpose input.
ĪRQ12	Input	Interrupt Request 12 One of the 27 maskable interrupts that can be configured for the MSC7110 device.
GPOA16	Output	General-Purpose Output A16 When configured through port A bit 16, performs as a general-purpose output.
EVNT4	Input/ Output	Event 4 Provides input and output events for the system control unit event multiplexers. Can be used to indicate that the SC1400 core is in Debug mode.
SWTE	Input	Software Watchdog Timer Disable This pin is sampled at the deassertion of PORESET. If the signal is sampled high, the watchdog timer is enabled. If it is sampled low, the watchdog timer is disabled.
Reserved	Input	Reserved PC12 (default) When configured through port C bit 12, reserved signal.
EE0/DBREQ	Input/ Output	OCE Event Bit 0/Debug Request Debug port EE0 functionality is detected by EDCA0 when EE0DEF=00, which generates an OCE event or enables EDCA0 when EE0DEF=10 in the SC1400 EE_CTRL register. When the port is programmed for Debug mode (EE0DEF=11 in the SC1400 EE_CTRL register, asserting this signal causes the core to enter Debug mode.

1.5.6 Boot Mode 3–2 (implemented in mask set 1M88B only)

Table 1-11. BM[3-2] Signals

Pin	Data Flow	Description
Reserved or GPID8	Input	Reserved D8 or General-Purpose Input D8 (default) When configured through port D bit 8, a reserved signal (mask set 1L44X) or a general-purpose input (mask set 1M88B).
Reserved or GPOD8	Output	Reserved D8 or General-Purpose Output D8 When configured through port D bit 8, a reserved signal (mask set 1L44X) or a general-purpose output (mask set 1M88B).
вм3	Input	Boot Mode 3 For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along with BM[0–2] the value of this signal defines the boot mode for the device. For designs developed using the 1L44X mask set, this signal can be left unconnected.
Reserved or GPID7	Input	Reserved D7 or General-Purpose Input D7 (default) When configured through port D bit 7, a reserved signal (mask set 1L44X) or a general-purpose input (mask set 1M88B).
Reserved or GPOD7	Output	Reserved B11 or General-Purpose Output B11 When configured through port D bit 7, a reserved signal (mask set 1L44X) or a general-purpose output (mask set 1M88B).
BM2	Input	Boot Mode 2 For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along with BM[0–1] and BM3, the value of this signal defines the boot mode for the device. For designs developed using the 1L44X mask set, this signal can be left unconnected.

1.5.7 GPIO

Table 1-12. GPIO Signals

Pin	Data Flow	Description			
GPIA0	Input	General-Purpose Input A9 (default) When configured through port A bit 6, performs as a general-purpose input.			
IRQ11	Input	Interrupt Request 11 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA0	Output	General-Purpose Output A0 When configured through port A bit 0, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA0 When configured through port A bit 0 as hardware-controlled, this is a reserved signal.			
GPIA1	Input	General-Purpose Input A1 (default) When configured through port A bit 1, performs as a general-purpose input.			
ĪRQ10	Input	Interrupt Request 10 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA1	Output	General-Purpose Output A1 When configured through port A bit 1, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA1 When configured through port A bit 1 as hardware-controlled, this is a reserved signal.			
GPIA2	Input	General-Purpose Input A2 (default) When configured through port A bit 2, performs as a general-purpose input.			
ĪRQ9	Input	Interrupt Request 9 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA2	Output	General-Purpose Output A2 When configured through port A bit 2, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA2 When configured through port A bit 2 as hardware-controlled, this is a reserved signal.			
GPIA3	Input	General-Purpose Input A3 (default) When configured through port A bit 3, performs as a general-purpose input.			
ĪRQ8	Input	Interrupt Request 8 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA3	Output	General-Purpose Output A3 When configured through port A bit 3, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA3 When configured through port A bit 3 as hardware-controlled, this is a reserved signal.			
GPIA4	Input	General-Purpose Input A4 (default) When configured through port A bit 4, performs as a general-purpose input.			
ĪRQ1	Input	Interrupt Request 1 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA4	Output	General-Purpose Output A4 When configured through port A bit 4, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA4 When configured through port A bit 4 as hardware-controlled, this is a reserved signal.			

1-14 Freescale Semiconductor

Table 1-12. GPIO Signals

Pin	Data Flow	Description			
GPIA5	Input	General-Purpose Input A5 (default) When configured through port A bit 5, performs as a general-purpose input.			
ĪRQ0	Input	Interrupt Request 0 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA5	Output	General-Purpose Output A5 When configured through port A bit 5, performs as a general-purpose output.			
Reserved	Input/Output	Reserved PA5 When configured through port A bit 5 as hardware-controlled, this is a reserved signal.			
GPIA19	Input	General-Purpose Input A19 (default) When configured through port A bit 19, performs as a general-purpose input.			
ĪRQ19	Input	Interrupt Request 19 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA19	Output	General-Purpose Output A19 When configured through port A bit 19, performs as a general-purpose output.			
GPIA20	Input	General-Purpose Input A20 (default) When configured through port A bit 20, performs as a general-purpose input.			
ĪRQ20	Input	Interrupt Request 20 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA20	Output	General-Purpose Output A20 When configured through port A bit 20, performs as a general-purpose output.			
GPIA21	Input	General-Purpose Input A21 (default) When configured through port A bit 21, performs as a general-purpose input.			
ĪRQ21	Input	Interrupt Request 21 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA21	Output	General-Purpose Output A21 When configured through port A bit 21, performs as a general-purpose output.			
GPIA22	Input	General-Purpose Input A22 (default) When configured through port A bit 22, performs as a general-purpose input.			
ĪRQ22	Input	Interrupt Request 22 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA22	Output	General-Purpose Output A22 When configured through port A bit 22, performs as a general-purpose output.			
GPIA23	Input	General-Purpose Input A23 (default) When configured through port A bit 23, performs as a general-purpose input.			
ĪRQ23	Input	Interrupt Request 23 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA23	Output	General-Purpose Output A23 When configured through port A bit 23, performs as a general-purpose output.			

Table 1-12. GPIO Signals

Pin	Data Flow	Description			
GPIA24	Input	General-Purpose Input A24 (default) When configured through port A bit 24, performs as a general-purpose input.			
ĪRQ24	Input	Interrupt Request 24 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA24	Output	General-Purpose Output A24 When configured through port A bit 24, performs as a general-purpose output.			
GPIA25	Input	General-Purpose Input A25 (default) When configured through port A bit 25, performs as a general-purpose input.			
ĪRQ25	Input	Interrupt Request 25 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA25	Output	General-Purpose Output A25 When configured through port A bit 25, performs as a general-purpose output.			
GPIA26	Input	General-Purpose Input A26 (default) When configured through port A bit 26, performs as a general-purpose input.			
ĪRQ26	Input	Interrupt Request 26 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA26	Output	General-Purpose Output A26 When configured through port A bit 26, performs as a general-purpose output.			
GPIA27	Input	General-Purpose Input A27 (default) When configured through port A bit 27, performs as a general-purpose input.			
ĪRQ16	Input	Interrupt Request 16 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA27	Output	General-Purpose Output A27 When configured through port A bit 27, performs as a general-purpose output.			
GPIA28	Input	General-Purpose Input A28 (default) When configured through port A bit 28, performs as a general-purpose input.			
ĪRQ17	Input	Interrupt Request 17 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA28	Output	General-Purpose Output A28 When configured through port A bit 28, performs as a general-purpose output.			
GPIA29	Input	General-Purpose Input A26 (default) When configured through port A bit 26, performs as a general-purpose input.			
ĪRQ18	Input	Interrupt Request 18 One of the 27 maskable interrupts that can be configured for the MSC7110 device.			
GPOA29	Output	General-Purpose Output A296 When configured through port A bit 29, performs as a general-purpose output.			
GPID4	Input	General-Purpose Input D4 (default) When configured through port D bit 4, performs as a general-purpose input.			
GPOD4	Output	General-Purpose Output D4 When configured through port D bit 4, performs as a general-purpose output.			
Reserved	Output	Reserved D4 (hardware-controlled) When port D bit 4 is configured as hardware-controlled reserved signal.			

MSC7110 Technical Data, Rev. 9

1-16 Freescale Semiconductor

Table 1-12. GPIO Signals

Pin	Data Flow	Description			
GPID5	Input	General-Purpose Input D5 (default) When configured through port D bit 5, performs as a general-purpose input.			
GPOD5	Output	General-Purpose Output D5 When configured through port D bit 5, performs as a general-purpose output.			
Reserved	Output	Reserved D5 (hardware-controlled) When port D bit 5 is configured as hardware-controlled, reserved signal.			
GPID6	Input	General-Purpose Input D6 (default) When configured through port D bit 6, performs as a general-purpose input.			
GPOD6	Output	General-Purpose Output D6 When configured through port D bit 6, performs as a general-purpose output.			
Reserved	Input	Reserved D6 (hardware-controlled) When port D bit 6 is configured as hardware-controlled, reserved signal.			

1.5.8 HDI16 Configuration

Table 1-13. HDI16 Configuration Signal

Pin	Data Flow	Description			
H8BIT	Input	Host 8/16 Bit Mode This pin is sampled at the deassertion of PORESET. If the line is sampled high at reset, the HDI16 operates in 8-bit mode when enabled. If the line is sampled low at reset, the HDI16 operates in 16-bit mode.			

1.5.9 NMI

Table 1-14. NMI Signal

Signal Name	Туре	Signal Description			
Reserved	Input	Reserved A18 (default) When configured through port A bit 18, reserved signal.			
NMI	Input	Non-Maskable Interrupt External device may assert this line to generate a non-maskable interrupt to the MSC7110 device.			

1.6 OCE Event and JTAG Test Access Port

The MSC7110 supports the standard set of Test Access Port (TAP) signals defined by **IEEE**® Std. 1149.1TM Test Access Port and Boundary-Scan Architecture specification and described in **Table 1-15**. The TPSEL pin should be tied to GND to access the TAP.

 Table 1-15.
 OCE Event and JTAG TAP Signals

Pin	Data Flow	Description			
TCK	Input	Test Clock Clock input for the MSC7110 JTAG controller to synchronize the test logic.			
TDI	Input	Test Data In A test data input (with an internal pull-up resistor) that is sampled on the rising edge of TCK.			

MSC7110 Technical Data, Rev. 9

Signals/Connections

Table 1-15. OCE Event and JTAG TAP Signals

Pin	Data Flow	Description
TDO	Output	Test Data Out A data output that can be three-stated and actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCK.
TMS	Input	Test Mode Select A test mode select input (with an internal pull-up resistor) that is sampled on the rising edge of TCK to sequence the TAP controllers state machine.
TRST	Input	Test Reset The reset input to the MSC7110 JTAG controller (with an internal pull-up resistor).
TPSEL	Input	Tap Select When deasserted, the Boundary Scan TAP controller is selected, allowing for boundary scan. When asserted, the Debug TAP controller is selected, allowing access to the OCE port.

1.7 Reserved Signals

Table 1-16. Reserved Signals

Signal Name	Туре	Signal Description
TEST0	Input	Test For manufacturing testing. You <i>must</i> connect this pin to GND.

1-18 Freescale Semiconductor

Specifications

2

This chapter covers power considerations, DC/AC electrical characteristics, and AC timing specifications. For additional information, see the *MSC711x Reference Manual*.

Note: The MSC7110 electrical specifications are preliminary and many are from design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized specifications will be published after thorough characterization and device qualifications have been completed.

2.1 Maximum Ratings

CAUTION

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, normal precautions should be taken to avoid exceeding maximum voltage ratings. Reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction. Therefore, a "maximum" value for a specification never occurs in the same device with a "minimum" value for another specification; adding a maximum to a minimum represents a condition that can never exist.

Specifications

Table 2-1 describes the maximum electrical ratings for the MSC7110.

 Table 2-1.
 Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.5	V
Memory supply voltage	V_{DDM}	4.0	V
PLL supply voltage	V _{DDPLL}	1.5	V
I/O supply voltage	V _{DDIO}	-0.2 to 4.0	V
Input voltage	V _{IN}	(GND – 0.2) to 4.0	V
Reference voltage	V _{REF}	4.0	V
Maximum operating temperature	T _J	105	°C
Minimum operating temperature	T _A	-40	°C
Storage temperature range	T _{STG}	-55 to +150	°C

Notes:

- 1. Functional operating conditions are given in Table 2-2.
- 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond the listed limits may affect device reliability or cause permanent damage.
- 3. Section 4.1, Thermal Design Considerations includes a formula for computing the chip junction temperature (T,J).

2.2 Recommended Operating Conditions

Table 2-2 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Table 2-2. Recommended Operating Conditions

Rating	Symbol	Value	Unit
Core supply voltage	V _{DDC}	1.14 to 1.26	V
Memory supply voltage	V _{DDM}	2.38 to 2.63	V
PLL supply voltage	V _{DDPLL}	1.14 to 1.26	V
I/O supply voltage	V _{DDIO}	3.14 to 3.47	V
Reference voltage	V _{REF}	1.19 to 1.31	V
Operating temperature range	T _J T _A	maximum: 105 minimum: –40	°C °C

2.3 Thermal Characteristics

Table 2-3 describes thermal characteristics of the MSC7110 for the MAP-BGA package.

Table 2-3. Thermal Characteristics for MAP-BGA Package

		MAP-BGA		
Characteristic	Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit
Junction-to-ambient ^{1, 2}	$R_{ heta JA}$	39	31	°C/W
Junction-to-ambient, four-layer board ^{1, 3}	$R_{ heta JA}$	23	20	°C/W
Junction-to-board ⁴	$R_{ heta JB}$	12		°C/W
Junction-to-case ⁵	$R_{ heta JC}$	7		°C/W
Junction-to-package-top ⁶	Ψ_{JT}	2		°C/W

Notes:

- Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- **6.** Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Section 4.1, *Thermal Design Considerations* explains these characteristics in detail.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC7110.

Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both V_{DDIO} and V_{DDC} vary by +2 percent or both vary by -2 percent).

Table 2-4. DC Electrical Characteristics

Characteristic	Symbol	Min	Typical	Max	Unit
Core and PLL voltage	V _{DDC} V _{DDPLL}	1.14	1.2	1.26	V
DRAM interface I/O voltage ¹	V_{DDM}	2.375	2.5	2.625	V
I/O voltage	V _{DDIO}	3.135	3.3	3.465	V
DRAM interface I/O reference voltage ²	V _{REF}	$0.49 \times V_{DDM}$	1.25	$0.51 \times V_{DDM}$	V
DRAM interface I/O termination voltage ³	VTT	V _{REF} - 0.04	V _{REF}	V _{REF} + 0.04	V
Input high CLKIN voltage	V _{IHCLK}	2.4	3.0	3.465	V
DRAM interface input high I/O voltage	V _{IHM}	V _{REF} + 0.28	V_{DDM}	V _{DDM} + 0.3	V
DRAM interface input low I/O voltage	V _{ILM}	-0.3	GND	V _{REF} - 0.18	V
Input leakage current, V _{IN} = V _{DDIO}	I _{IN}	-1.0	0.09	1	μA
V _{REF} input leakage current	I _{VREF}	_	_	5	μA
Tri-state (high impedance off state) leakage current, $V_{IN} = V_{DDIO}$	I _{OZ}	-1.0	0.09	1	μA
Signal low input current, V _{IL} = 0.4 V	ΙL	-1.0	0.09	1	μA
Signal high input current, V _{IH} = 2.0 V	I _H	-1.0	0.09	1	μA
Output high voltage, I _{OH} = -2 mA, except open drain pins	V _{OH}	2.0	3.0	_	V
Output low voltage, I _{OL} = 5 mA	V _{OL}	_	0	0.4	V
Typical core power ⁵ • at 200 MHz • at 266 MHz (mask set 1M88B only)	P _C	_ _	222 293	_ _	mW mW

Notes:

- 1. The value of V_{DDM} at the MSC7110 device must remain within 50 mV of V_{DDM} at the DRAM device at all times.
- V_{REF} must be equal to 50% of V_{DDM} and track V_{DDM} variations as measured at the receiver. Peak-to-peak noise must not exceed ±2% of the DC value.
- 3. V_{TT} is not applied directly to the MSC7110 device. It is the level measured at the far end signal termination. It should be equal to V_{REF}. This rail should track variations in the DC level of V_{REF}.
- **4.** Output leakage for the memory interface is measured with all outputs disabled, $0 \text{ V} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{DDM}}$.
- The core power values were measured using a standard EFR pattern at typical conditions (25°C, 200 MHz or 266 MHz, 1.2 V core).

Table 2-5 lists the DDR DRAM capacitance.

Table 2-5. DDR DRAM Capacitance

Parameter/Condition	Symbol	Max	Unit
Input/output capacitance: DQ, DQS	C _{IO}	30	pF
Delta input/output capacitance: DQ, DQS	C _{DIO}	30	pF

Note: These values were measured under the following conditions:

- $V_{DDM} = 2.5 V \pm 0.125 V$
- f = 1 MHz
- T_A = 25°C
- $V_{OUT} = V_{DDM}/2$
- V_{OUT} (peak to peak) = 0.2 V

MSC7110 Technical Data, Rev. 9

2-4 Freescale Semiconductor

2.5 AC Timings

This section presents timing diagrams and specifications for individual signals and parallel I/O outputs and inputs. All AC timings are based on a 30 pF load, except where noted otherwise, and a 50 Ω transmission line. For any additional pF, use the following equations to compute the delay:

• Standard interface: $2.45 + (0.054 \times C_{load})$ ns

• DDR interface: $1.6 + (0.002 \times C_{load})$ ns

2.5.1 Clock and Timing Signals

The following tables describe clock signal characteristics. **Table 2-6** shows the maximum frequency values for internal (core, reference, and peripherals) and external (CLKO) clocks. You must ensure that maximum frequency values are not exceeded (see for the allowable ranges when using the PLL).

Table 2-6. Maximum Frequencies

Characteristic	Maximu	Maximum in MHz		
Characteristic	Mask Set 1L44X	Mask Set 1M88B		
Core clock frequency (CLOCK)	200	266		
External output clock frequency (CLKO)	50	67		
Memory clock frequency (CK, CK)	100	133		
TDM clock frequency (TxRCK, TxTCK)	50	67		

Table 2-7. Clock Frequencies in MHz

Characteristic	Symbol	Min	Max		
Characteristic		IVIIII	Mask Set 1L44X	Mask Set 1M88B	
CLKIN frequency	F _{CLKIN}	10	100	100	
CLOCK frequency	F _{CORE}	_	200	266	
CK, CK frequency	F _{CK}	_	100	133	
TDMxRCK, TDMxTCK frequency	F _{TDMCK}	_	50	50	
CLKO frequency	F _{CKO}	_	50	67	
AHB/IPBus/APB clock frequency	F _{BCK}	_	100	133	
Note: The rise and fall time of external clocks should be 5 ns maximum					

Table 2-8. System Clock Parameters

Characteristic	Min	Max	Unit
CLKIN frequency	10	100	MHz
CLKIN slope	_	5	ns
CLKIN frequency jitter (peak-to-peak)	_	1000	ps
CLKO frequency jitter (peak-to-peak)	_	150	ps

2.5.2 Configuring Clock Frequencies

This section describes important requirements for configuring clock frequencies in the MSC7110 device when using the PLL block. To configure the device clocking, you must program four fields in the Clock Control Register (CLKCTL):

- PLLDVF field. Specifies the PLL division factor. The output of the divider block is the input to the multiplier block.
- PLLMLTF field. Specifies the PLL multiplication factor. The output from the multiplier block is the VCO.
- RNG field. Selects the available PLL frequency range.
- CKSEL field. Selects the source for the core clock.

There are restrictions on the frequency range permitted at the beginning of the multiplication portion of the PLL that affect the allowable values for the PLLDVF and PLLMLTF fields. The following sections define these restrictions and provide guidelines to configure the device clocking when using the PLL. Refer to the Clock and Power Management chapter in the *MSC711x Reference Manual* for details on the clock programming model.

2.5.2.1 PLL Multiplier Restrictions

There are two restrictions for correct usage of the PLL block:

- The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range 10.5–19.5 MHz.
- The output frequency of the PLL multiplier must be in the range 300-600 MHz.

When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you must meet these constraints.

2.5.2.2 Division Factors and Corresponding CLKIN Frequency Range

The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in **Table 2-9**.

PLLDVF Divide **CLKIN Frequency Range** Comments **Field Value Factor** Pre-Division by 1 0x00 10.5 to 19.5 MHz 1 2 Pre-Division by 2 0x01 21 to 39 MHz 0x02 3 31.5 to 58.5 MHz Pre-Division by 3 0x03 4 42 to 78 MHz Pre-Division by 4 5 Pre-Division by 5 0x04 52.5 to 97.5 MHz 0x05 6 63 to 100 MHz Pre-Division by 6 0x06 7 73.5 to 100 MHz Pre-Division by 7 8 0x07 84 to 100 MHz Pre-Division by 8 80x0 9 94.5 to 100 MHz Pre-Division by 9 The maximum CLKIN frequency is 100 MHz. Therefore, the PLLDVF value must be in the range from 1-9.

Table 2-9. CLKIN Frequency Ranges by Divide Factor Value

MSC7110 Technical Data, Rev. 9

2-6 Freescale Semiconductor

2.5.2.3 Multiplication Factor Range

The multiplier block output frequency ranges depend on the input clock frequency as shown in **Table 2-10**.

Table 2-10. PLLMLTF Ranges

	Multiplier Block (Loop) Output Range	Minimum PLLMLTF Value	Maximum PLLMLTF Value
	$300 \le [Pre-Divided Clock \times (PLLMLTF + 1)] \le 600 MHz$	300/Pre-Divided Clock	600/Pre-Divided Clock
Note:	This table results from the allowed range for F_{Loop} . The minim frequency of the Pre-Divided Clock.	num and maximum multiplication fa	ctors are dependent on the

2.5.2.4 Allowed Core Clock Frequency Range

The frequency delivered to the core, extended core, and peripheral depends on the value of the CLKCTRL[RNG] bit as shown in **Table 2-11**.

Table 2-11. F_{vco} Frequency Ranges

CLI	KCTRL[RNG] Value	Allowed Range of F _{vco}		
	1	300 ≤ F _{vco} ≤ 600 MHz		
	0	150 ≤ F _{vco} ≤ 300 MHz		
Note:	te: This table results from the allowed range for F _{vco} , which is F _{Loop} modified by CLKCTRL[RNG].			

This bit along with the CKSEL determines the frequency range of the core clock.

Table 2-12. Resulting Ranges Permitted for the Core Clock

CLKCTRL[CKSEL]	CLKCTRL[RNG]	Resulting Division Factor	Allowed Range of Core Clock	Comments	
11	1	1	Reserved	Reserved	
11	0	2	150 ≤ Core_Clk ≤ 200 MHz	Limited by range of PLL	
01	1 2 150 ≤ Core_Clk ≤ 200 MHz		Limited by range of PLL		
01	0	4	75 ≤ Core_Clk ≤ 150 MHz	Limited by range of PLL	
Note: This table results from the allowed range for F _{OUT} , which depends on clock selected via CLKCTRL[CKSEL].					

2.5.2.5 Core Clock Frequency Range When Using DDR Memory

The core clock can also be limited by the frequency range of the DDR devices in the system. **Table 2-13** summarizes this restriction.

Table 2-13. Core Clock Ranges When Using DDR

DDR Type	Allowed Frequency Range for DDR CK	Corresponding Range for the Core Clock	Comments
DDR 200 (PC-1600)	83–100 MHz	166 ≤ core clock ≤ 200 MHz	Core limited to 2 × maximum DDR frequency
DDR 266 (PC-2100)	83–133 MHz	166 ≤ core clock ≤ 266 MHz	Core limited to 2 × maximum DDR frequency
DDR 333 (PC-2600)	83–150 MHz	166 ≤ core clock ≤ 300 MHz	Core limited to 2 × maximum DDR frequency

2.5.3 Reset Timing

The MSC7110 device has several inputs to the reset logic. All MSC7110 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 2-14** describes the reset sources.

Table 2-14. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC7110 and configures various attributes of the MSC7110. On PORESET, the entire MSC7110 device is reset. SPLL and DLL states are reset, HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The system is configured only when PORESET is asserted.
External Hard reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC7110. While HRESET is asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400 extended core is reset.
Software watchdog reset	Internal	When the MSC7110 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC7110 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
JTAG EXTEST, CLAMP, or HIGHZ command	Internal	When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic asserts an internal reset signal that generates an internal soft reset sequence.

Table 2-15 summarizes the reset actions that occur as a result of the different reset sources.

Table 2-15. Reset Actions for Each Reset Source

	Power-On Reset (PORESET)	H <u>ard Rese</u> t (HRESET)	S <u>oft Rese</u> t (SRESET)
Reset Action/Reset Source	External only	External or Internal (Software Watchdog or Bus Monitor)	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (refer to Section 2.5.3.1 for details).	Yes	No	No
PLL and clock synthesis states Reset	Yes	No	No
HRESET Driven	Yes	Yes	No
Software watchdog and bus time-out monitor registers	Yes	Yes	Yes
Clock synthesis modules (STOPCTRL, HLTREQ, and HLTACK) reset	Yes	Yes	Yes
Extended core reset	Yes	Yes	Yes
Peripheral modules reset	Yes	Yes	Yes

2-8 Freescale Semiconductor

2.5.3.1 Power-On Reset (PORESET) Pin

Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN cycles after external power to the MSC7110 reaches at least 2/3 V_{DD}.

2.5.3.2 Reset Configuration

The MSC7110 has two mechanisms for writing the reset configuration:

- From a host through the host interface (HDI16)
- From memory through the I²C interface

Five signal levels (see **Chapter 1** for signal description details) are sampled on PORESET deassertion to define the boot and operating conditions:

- BM[0–1]
- SWTE
- H8BIT
- HDSP

2.5.3.3 Reset Timing Tables

Table 2-16 and **Figure 2-1** describe the reset timing for a reset configuration write.

Table 2-16. Timing for a Reset Configuration Write

No.	Characteristics	Expression	Unit		
1	Required external PORESET duration minimum	16/F _{CLKIN}	clocks		
2	Delay from PORESET deassertion to HRESET deassertion	521/F _{CLKIN}	clocks		
Note:	Note: Timings are not tested, but are guaranteed by design.				

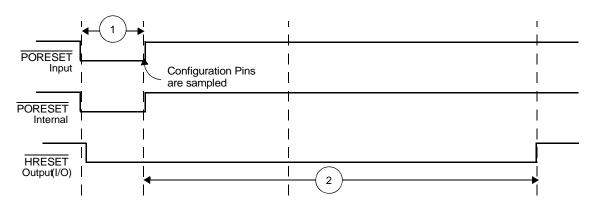


Figure 2-1. Timing Diagram for a Reset Configuration Write

DDR DRAM Controller Timing 2.5.4

This section provides the AC electrical characteristics for the DDR DRAM interface.

DDR DRAM Input AC Timing Specifications 2.5.4.1

Table 2-17 provides the input AC timing specifications for the DDR DRAM interface.

Table 2-17. DDR DRAM Input AC Timing

No.	Parameter	Symbol	Min	Max		
				Mask Set 1L44X	Mask Set 1M88B	Unit
_	AC input low voltage	V _{IL}	_	V _{REF} - 0.31	V _{REF} – 0.31	V
_	AC input high voltage	V _{IH}	V _{REF} + 0.31	V _{DDM} + 0.3	V _{DDM} + 0.3	V
201	Maximum Dn input setup skew relative to DQSn input	_	_	1026	900	ps
202	Maximum Dn input hold skew relative to DQSn input	_	_	386	900	ps

Notes: 1.

- Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + $\{0...7\}$] if $0 \le n \le 7$).
- 2. See Table 2-18 for t_{CK} value.
- Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is done internally.

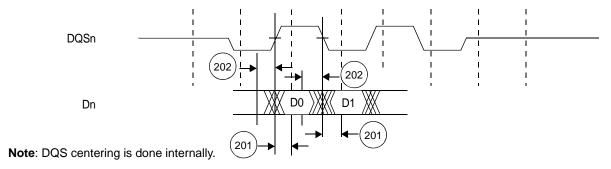


Figure 2-2. DDR DRAM Input Timing Diagram

2.5.4.2 DDR DRAM Output AC Timing Specifications

Table 2-18 and **Table 2-19** list the output AC timing specifications and measurement conditions for the DDR DRAM interface.

 Table 2-18.
 DDR DRAM Output AC Timing

			М			
No.	Parameter	Symbol	Mask Set 1L44X	Mask Set 1M88B	Max	Unit
200	CK cycle time, (CK/CK crossing) ¹ • 100 MHz (DDR200) • 133 MHz (DDR266)	t _{CK}	10 Not applicable	1.0 7.52	-	ns ns
204	An/RAS/CAS/WE/CKE output setup with respect to CK	t _{DDKHAS}	0.5 × t _{CK} – 2250	0.5 × t _{CK} – 1000	_	ps
205	An/RAS/CAS/WE/CKE output hold with respect to CK	t _{DDKHAX}	0.5 × t _{CK} - 1250	$0.5 \times t_{CK} - 1000$	_	ps
206	CSn output setup with respect to CK	t _{DDKHCS}	$0.5 \times t_{CK} - 2250$	$0.5 \times t_{CK} - 1000$	_	ps
207	CSn output hold with respect to CK	t _{DDKHCX}	$0.5 \times t_{CK} - 1250$	$0.5 \times t_{CK} - 1000$	_	ps
208	CK to DQSn ²	t _{DDKHMH}	-600	-600	600	ps
209	Dn/DQMn output setup with respect to DQSn ³	t _{DDKHDS,} t _{DDKLDS}	0.25 × t _{MCK} – 1050	$0.25 \times t_{CK} - 750$	_	ps
210	Dn/DQMn output hold with respect to DQSn ³	t _{DDKHDX,} t _{DDKLDX}	0.25 × t _{CK} - 1050	$0.25 \times t_{CK} - 750$	_	ps
211	DQSn preamble start ⁴	t _{DDKHMP}	$-0.25 \times t_{CK}$	$-0.25 \times t_{CK}$	_	ps
212	DQSn epilogue end ⁵	t _{DDKHME}	-600	-600	600	ps

Notes:

- 1. All CK/\overline{CK} referenced measurements are made from the crossing of the two signals $\pm 0.1 \text{ V}$.
- 2. t_{DDKHMH} can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 410 ps before the CK/CK crossing and no later than 677 ps after the crossing time; the device uses 1087 ps of the skew budget (the interval from –410 to +677 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the MSC711x Reference Manual for details.
- 3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe should be centered inside of the data eye.
- 4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this reason, we reference from DQSn.
- 5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition there is no real "maximum" time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the chip to guarantee fast enough write to read turn-around times. This is already guaranteed by the memory controller operation.

Figure 2-3 shows the DDR DRAM output timing diagram.

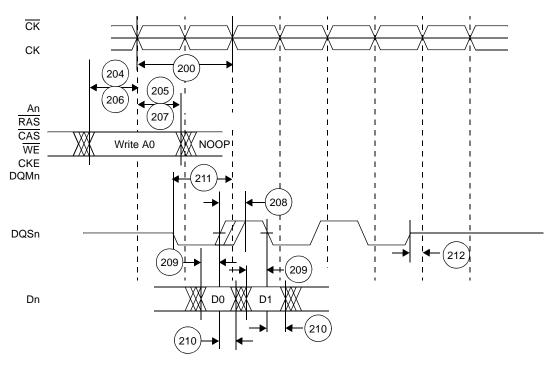


Figure 2-3. DDR DRAM Output Timing Diagram

Figure 2-4 provides the AC test load for the DDR DRAM bus.

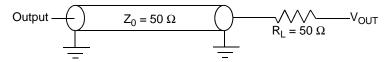


Figure 2-4. DDR DRAM AC Test Load

 Table 2-19.
 DDR DRAM Measurement Conditions

		Symbol	DDR DRAM	Unit
V _{TH} ¹			V _{REF} ± 0.31 V	V
V _{OUT} ²			$0.5 \times V_{DDM}$	٧
Notes:	1. 2.	Data input threshold measurement point. Data output measurement point.		

2-12 Freescale Semiconductor

2.5.5 TDM Timing

Table 2-20. TDM	Timing
------------------------	--------

No.	Characteristic	Expression	Min	Max	Units
300	TDMxRCK/TDMxTCK	TC	20.0	_	ns
301	TDMxRCK/TDMxTCK High Pulse Width	0.4 × TC	8.0	_	ns
302	TDMxRCK/TDMxTCK Low Pulse Width	0.4 × TC	8.0	_	ns
303	TDM all input Setup time		3.0	_	ns
304	TDMxRD Hold time		3.5	_	ns
305	TDMxTFS/TDMxRFS input Hold time		2.0	_	ns
306	TDMxTCK High to TDMxTD output active		4.0	_	ns
307	TDMxTCK High to TDMxTD output valid		_	14.0	ns
308	TDMxTD hold time		2.0	_	ns
309	TDMxTCK High to TDMxTD output high impedance		_	10.0	ns
310	TDMXTFS/TDMxRFS output valid		_	13.5	ns
311	TDMxTFS/TDMxRFS output hold time		2.5	_	ns

Notes: 1. Output values are based on 30 pF capacitive load.

2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.

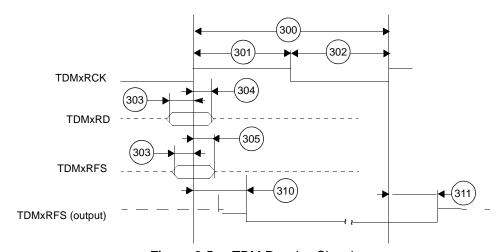


Figure 2-5. TDM Receive Signals

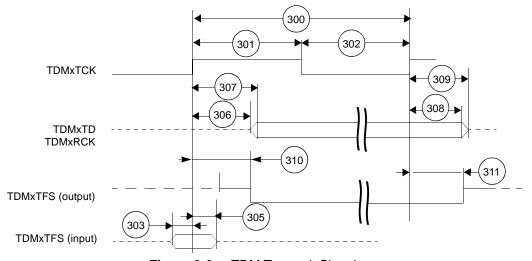


Figure 2-6. TDM Transmit Signals

MSC7110 Technical Data, Rev. 9

2.5.6 HDI16 Signals

Table 2-21. Host Interface (HDI16) Timing^{1, 2}

N.	Characteristics3	Mask Set 1L44X		Mask Set 1M88B		
No.	Characteristics ³	Expression	Value	Expression	Value	
40	Host Interface Clock period	T _{HCLK}	Note 1	T _{CORE}	Note 1	ns
	Read data strobe minimum assertion width ⁴ HACK read minimum assertion width	3.0 × T _{HCLK}	Note 11	2.0 × T _{CORE} + 9.0	Note 11	ns
	Read data strobe minimum deassertion width ⁴ HACK read minimum deassertion width	1.5 × T _{HCLK}	Note 11	1.5 × T _{CORE}	Note 11	ns
	Read data strobe minimum deassertion width ⁴ after "Last Data Register" reads ^{5,6} , or between two consecutive CVR, ICR, or ISR reads ⁷ HACK minimum deassertion width after "Last Data Register" reads ^{5,6}	2.5 × T _{HCLK}	Note 11	2.5 × T _{CORE}	Note 11	ns
	Write data strobe minimum assertion width ⁸ HACK write minimum assertion width	1.5 × T _{HCLK}	Note 11	1.5 × T _{CORE}	Note 11	ns
46	Write data strobe minimum deassertion width ⁸ HACK write minimum deassertion width after ICR, CVR and Data Register writes ⁵	2.5 × T _{HCLK}	Note 11	2.5 × T _{CORE}	Note 11	ns
	Host data input minimum setup time before write data strobe deassertion ⁸ Host data input minimum setup time before HACK write deassertion	_	3.0	_	2.5	ns
	Host data input minimum hold time after write data strobe deassertion ⁸ Host data input minimum hold time after HACK write deassertion	_	4.0	_	2.5	ns
49	Read data strobe minimum assertion to output data active from high impedance ⁴ HACK read minimum assertion to output data active from high impedance	_	1.0	_	1.0	ns
50	Read data strobe maximum assertion to output data valid ⁴ HACK read maximum assertion to output data valid	(2.0 × T _{HCLK}) + 8.0	Note 11	(2.0 × T _{CORE}) + 8.0	Note 11	ns
	Read data strobe maximum deassertion to output data high impedance ⁴ HACK read maximum deassertion to output data high impedance	_	8.0	_	9.0	ns
52	Output data minimum hold time after read data strobe deassertion ⁴ Output data minimum hold time after HACK read deassertion	_	1.0	_	1.0	ns
53	HCS[1–2] minimum assertion to read data strobe assertion ⁴	_	0.0	_	0.5	ns
54	HCS[1–2] minimum assertion to write data strobe assertion ⁸	_	0.0	_	0.0	ns
55	HCS[1-2] maximum assertion to output data valid	$(2.0 \times T_{HCLK}) + 8.0$	Note 11	$(2.0 \times T_{CORE}) + 6.0$	Note 11	ns
56	HCS[1–2] minimum hold time after data strobe deassertion ⁹	_	0.0	_	0.5	ns
57	HA[0-3], HRW minimum setup time before data strobe assertion ⁹	_	5.0	_	5.0	ns
58	HA[0–3], HRW minimum hold time after data strobe deassertion ⁹	_	5.0	_	5.0	ns
61	Maximum delay from read data strobe deassertion to host request deassertion for "Last Data Register" read ^{4, 5, 10}	$(3.0 \times T_{HCLK}) + 8.0$	Note 11	$(3.0 \times T_{CORE}) + 6.0$	Note 11	ns
62	Maximum delay from write data strobe deassertion to host request deassertion for "Last Data Register" write ^{5,8,10}	(3.0 × T _{HCLK}) + 8.0	Note 11	(3.0 × T _{CORE}) + 6.0	Note 11	ns
63	Minimum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) deassertion to HREQ assertion.	(2.0 × T _{HCLK}) + 1.0	Note 11	(2.0 × T _{CORE}) + 1.0	Note 11	ns
	Maximum delay from DMA HACK (OAD=0) or Read/Write data strobe(OAD=1) assertion to HREQ deassertion	(5.0 × T _{HCLK}) + 8.0	Note 11	(5.0 × T _{CORE}) + 6.0	Note 11	ns

2-14 Freescale Semiconductor

Table 2-21. Host Interface (HDI16) Timing^{1, 2} (Continued)

No.	Characteristics ³		Characteristics ³ Mask Set 1L44X		Mask Set 1M88B		Unit	
NO.		Characteristics	Expression	Value	Expression	Value		
Notes:	1.	1. T _{HCLK} = 2/ (Core Clock). At 200 MHz, T _{HCLK} = 10 ns. T _{CORE} = core clock period. At 266 MHz, T _{CORE} = 3.75 ns.						
	2.	In the timing diagrams below, the controls pins are drawn as	s active low. The pin	polarity is	programmable.			
	3.	$V_{DD} = 3.3 \text{ V} \pm 0.15 \text{ V}$; $T_{J} = -40 ^{\circ}\text{C}$ to $+105 ^{\circ}\text{C}$, $C_{L} = 30 \text{ pF}$ fo	r maximum delay tim	ings and ($C_L = 0$ pF for minimu	ım delay tiı	nings.	
	4.	The read data strobe is HRD/HRD in the dual data strobe m	ode and HDS/HDS i	n the singl	e data strobe mode.			
	5.	For 64-bit transfers, The "last data register" is the register at	address 0x7, which	is the last	location to be read of	or written ir	n data	
		transfers. This is RX0/TX0 in the little endian mode (HBE =	0), or RX3/TX3 in the	e big endia	n mode (HBE = 1).			
	6.	This timing is applicable only if a read from the "last data reg	gister" is followed by	a read froi	m the RXL, RXM, or	RXH regis	sters	
		without first polling RXDF or HREQ bits, or waiting for the as	ssertion of the HREC	HREQ si	gnal.			
	7.	This timing is applicable only if two consecutive reads from	one of these register	s are exec	uted.			
	8.	The write data strobe is HWR in the dual data strobe mode	and HDS in the singl	e data stro	be mode.			
	9.	The data strobe is host read (HRD/HRD) or host write (HWF	(HWR/HWR) in the dual data strobe mode and host data strobe					
		(HDS/HDS) in the single data strobe mode.	,					
	10.	The host request is HREQ/HREQ in the single host request	uest mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host					
		request mode. HRRQ/HRRQ is deasserted only when HOT (treat as level Host Request).	trequest mode and trick of like and trick of lik					

Figure 2-7 and **Figure 2-8** show HDI16 read signal timing. **Figure 2-9** and **Figure 2-10** show HDI16 write signal timing.

12. For mask set 1M88B, the read and write data strobe minimum deassertion width for non-"last data register" accesses in single

11. Compute the value using the expression.

and dual data strobe modes is based on timings 57 and 58.

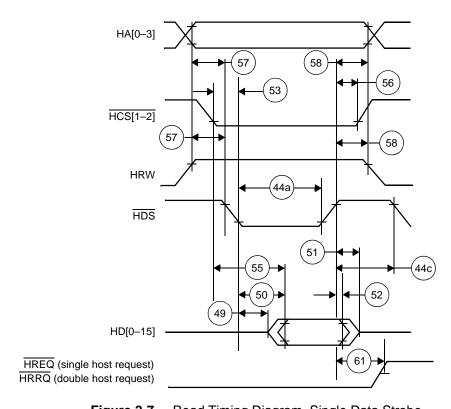


Figure 2-7. Read Timing Diagram, Single Data Strobe

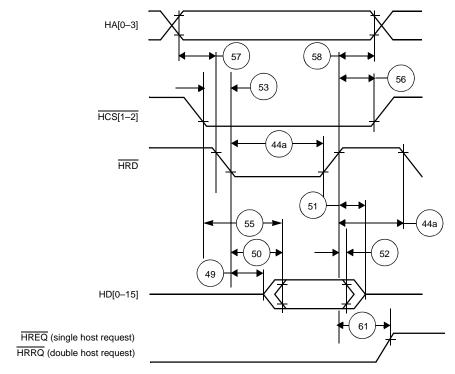


Figure 2-8. Read Timing Diagram, Double Data Strobe

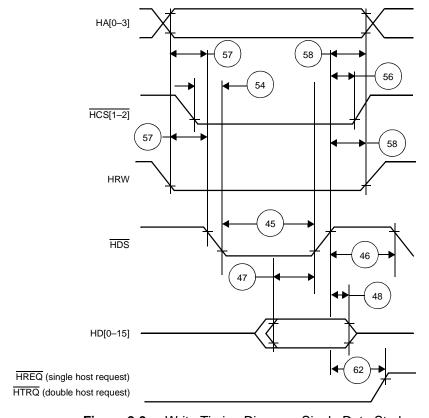


Figure 2-9. Write Timing Diagram, Single Data Strobe

2-16 Freescale Semiconductor

2-17

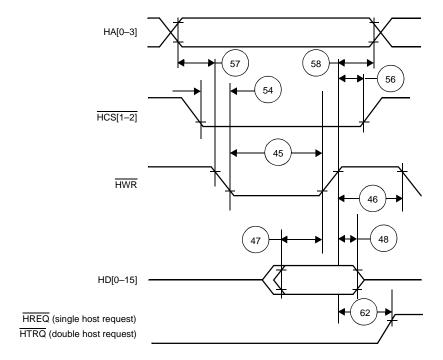
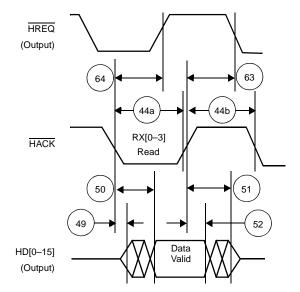
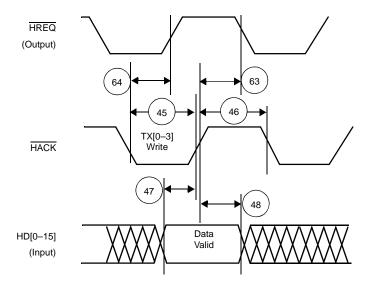




Figure 2-10. Write Timing Diagram, Double Data Strobe

Figure 2-11. Host DMA Read Timing Diagram, HPCR[OAD] = 0

Figure 2-12. Host DMA Write Timing Diagram, HPCR[OAD] = 0

2.5.7 I²C Timing

I²C Timing Table 2-22.

NI-	Observatorists	Fast	11			
No.	Characteristic	Min	Max	Unit		
450	SCL clock frequency	0	400	kHz		
451	Hold time START condition	(Clock period/2) – 0.3	_	μs		
452	SCL low period	(Clock period/2) - 0.3	_	μs		
453	SCL high period	(Clock period/2) – 0.1	_	μs		
454	Repeated START set-up time (not shown in figure)	2 × 1/F _{BCK}	_	μs		
455	Data hold time	0	_	μs		
456	Data set-up time	250	_	ns		
457	SDA and SCL rise time	_	700	ns		
458	SDA and SCL fall time	_	300	ns		
459	Set-up time for STOP	(Clock period/2) - 0.7	_	μs		
460	Bus free time between STOP and START	(Clock period/2) – 0.3	_	μs		
Note:	SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance on SDA and SCL is 400 pF.					

MSC7110 Technical Data, Rev. 9

2-18 Freescale Semiconductor

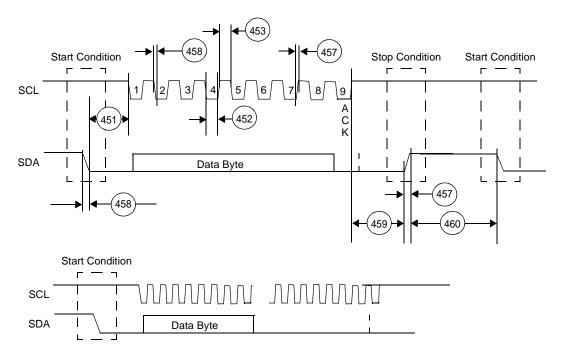


Figure 2-13. I²C Timing Diagram

2.5.8 UART Timing

Table 2-23. UART Timing

No.	Characteristics	Expression	Mask Set 1L44X		Mask Set 1M88B		Unit
			Min	Max	Min	Max	
_	Internal bus clock (APBCLK)	F _{CORE} /2	_	100	_	133	MHz
_	Internal bus clock period (1/APBCLK)	T _{APBCLK}	10.0	_	7.52	_	ns
400	URXD and UTXD inputs high/low duration	16×T _{APBCLK}	160.0	_	120.3	_	ns
401	URXD and UTXD inputs rise/fall time		_	5	_	5	ns
402	UTXD output rise/fall time		_	5	_	5	ns

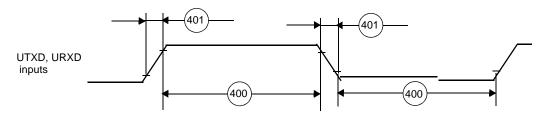


Figure 2-14. UART Input Timing

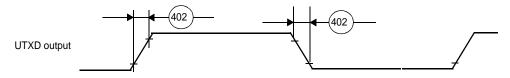


Figure 2-15. UART Output Timing

MSC7110 Technical Data, Rev. 9

2.5.9 EE Timing

Table 2-24. EE0 Timing

Number		Characteristics	Туре	Min			
65		EE0 input to the core	Asynchronous	4 core clock periods			
66		EE0 output from the core	Synchronous to core clock	1 core clock period			
Notes: 1. 2. 3.	2. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details.						

Figure 2-17 shows the signal behavior of the EE pin.

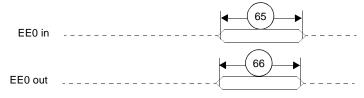


Figure 2-16. EE Pin Timing

2.5.10 Event Timing

Table 2-25. EVNT Signal Timing

Number		Characteristics	Туре	Min			
67		EVNT as input	Asynchronous	1.5 × APBCLK periods			
68		EVNT as output	Synchronous to core clock	1 APBCLK period			
Notes: 1. Refer to Table 2-23 for a definition of the APBCLK period.							
2.	Direction of the EVNT signal is configured through the GPIO and Event port registers.						
3.	Ref	Refer to Table 1-10 on page 1-12 for details on EVNT pin functionality.					

Figure 2-17 shows the signal behavior of the EVNT pin.

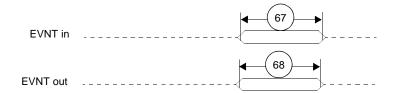


Figure 2-17. EVNT Pin Timing

2-20 Freescale Semiconductor

2.5.11 GPIO Timing

Table 2-26. GPIO Signal Timing^{1,2,3}

Number	Characteristics	Туре	Min				
601	GPI ^{4.5}	Asynchronous	1.5 × APBCLK periods				
602	GPO ⁵	Synchronous to core clock	1 APBCLK period				
603	Port A edge-sensitive interrupt	Asynchronous	1.5 × APBCLK periods				
604	Port A level-sensitive interrupt	Asynchronous	3 × APBCLK periods ⁶				
Notes: 1. Refer to Table 2-23 for a definition of the APBCLK period. 2. Direction of the GPIO signal is configured through the GPIO port registers. 3. Refer to Table 1-12 on page 1-14 for details on GPIO pin functionality.							

- 4. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data
- 4. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data into a register when the GPA_DR is read. The specification is not tested due to the asynchronous nature of the input and dependence on the state of the DSP core. It is guaranteed by design.
- 5. The input and output signals cannot toggle faster than 50 MHz.
- Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is acknowledged.

Figure 2-18 shows the signal behavior of the GPI/GPO pin.

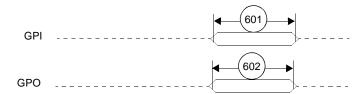


Figure 2-18. GPI/GPO Pin Timing

2.5.12 JTAG Signals

Table 2-27. JTAG Timing

No.	Characteristics	All freq	luencies	Unit		
NO.	Gilaracteristics	Min	Max			
700	TCK frequency of operation (1/(T _C × 3); maximum 22 MHz)	0.0	40.0	MHz		
701	TCK cycle time	25.0	_	ns		
702	TCK clock pulse width measured at $V_{M} = 1.6 \text{ V}$	11.0	_	ns		
703	TCK rise and fall times	0.0	3.0	ns		
704	Boundary scan input data set-up time	5.0	_	ns		
705	Boundary scan input data hold time	14.0	_	ns		
706	TCK low to output data valid	0.0	20.0	ns		
707	TCK low to output high impedance	0.0	20.0	ns		
708	TMS, TDI data set-up time	5.0	_	ns		
709	TMS, TDI data hold time	25.0	_	ns		
710	TCK low to TDO data valid	0.0	24.0	ns		
711	TCK low to TDO high impedance	0.0	10.0	ns		
712	TRST assert time	100.0	_	ns		
Note:	All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.					

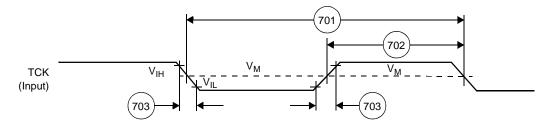


Figure 2-19. Test Clock Input Timing Diagram

2-22 Freescale Semiconductor

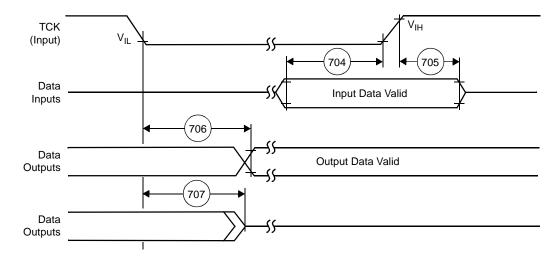


Figure 2-20. Boundary Scan (JTAG) Timing Diagram

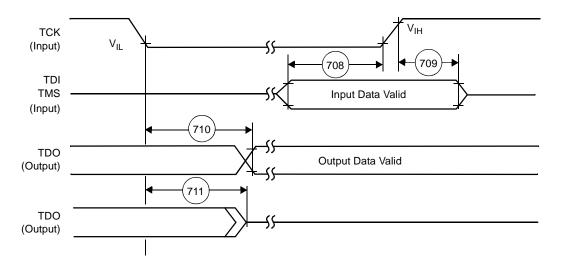


Figure 2-21. Test Access Port Timing Diagram

Figure 2-22. TRST Timing Diagram

Specifications

MSC7110 Technical Data, Rev. 9

2-24 Freescale Semiconductor

Packaging 3

This section on the MSC7110 package includes diagrams of the package ball layout and tables showing how the signals discussed in **Chapter 1** are allocated. The MSC7110 is available in a 400-pin Molded Array Process-Ball Grid Array (MAP-BGA) package with either lead-free or lead-bearing solder spheres.

Note: See Lead-Free BGA Solder Joint Assembly Evaluation (EB635) for manufacturing and assembly guidelines.

3.1 MAP-BGA Package

Figure 3-1 and **Figure 3-2** show top and bottom views of the MAP-BGA package, including ball location. Signal names shown in the figures represent the only signal assigned to the location or, for multiplexed signals, the primary hardware-controlled option. Signals used only during power-on reset (SWTE, HDSP, and BM[0–1]) are not shown in these figures.

Table 3-1 lists the MSC7110 signals alphabetically by signal name. Connections with multiple names are listed individually by each name. Signals with programmable polarity are shown both as asserted low (default) and high (that is, NAME/NAME). **Table 3-2** lists the signals numerically by pin number. Each pin number is listed once with the various signals that are multiplexed to it categorized by the configuration or state that defines the signal. Four host interface signals have alternate functions (single or double host request and single or double data strobe) that are configured by the host interface registers.

Note:

Top View 7 10 1 2 3 4 5 6 11 12 13 14 15 16 17 18 19 20 GND NC CS0 DQM2 DQS3 DQS0 HD14 HD11 CKE HD8 HD5 HD2 NC NC В V_{DDM} CS1 DQM3 DQM0 DQS1 RAS CAS HD13 HD3 NC NC NC С D30 D25 HD9 GND NC V_{DDM} V_{DDM} V_{DDM} V_{DDM} V_{DDM} V_{DDM} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDC} D31 V_{DDM} NC GND D26 V_{DDM} V_{DDC} V_{DDC} V_{DDC} V_{DDC} V_{DDM} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDIO} V_{DDC} V_{DDC} F D29 V_{DDC} GND GND GND GND GND GND NC D15 V_{DDC} V_{DDC} V_{DDM} V_{DDM} V_{DDIO} V_{DDC} F GND GND GND NC G V_{DDM} V_{DDM} V_{DDIO} V_{DDIO} D12 GND GND GND GND GND GND GND GND GND HA1 Н D14 V_{DDM} V_{DDM} V_{DDIO} V_{DDIO} V_{DDC} HACK HREQ V_{DDM} V_{DDM} V_{DDM} GND GND GND GND GND GND GND GND GND V_{DDIO} V_{DDC} НАЗ V_{DDM} D9 D10 GND GND GND GND GND GND GND HDDS HDS V_{DDC} V_{DDM} GND GND GND V_{DDIO} V_{DDIO} GND V_{DDC} V_{DDM} GND GND GND GND GND GND GND GND V_{DDIO} V_{DDIO} V_{DDC} HCS1 HRW V_{DDIO} V_{DDM} D5 V_{DDM} V_{DDM} GND V_{DDC} V_{DDC} SDA UTXD URXD М GND GND GND GND GND GND GND CLKIN V_{DDM} GND V_{DDIO} V_{DDC} V_{DDC} Ν V_{SSPLI} V_{DDM} V_{DDM} V_{DDM} GND GND GND GND GND GND GND GND V_{DDIO} V_{DDIO} V_{DDC} PORESE Р V_{DDPLI} V_{DDIO} D18 GND V_{DDM} GND V_{DDM} GND GND V_{DDIO} GND TESTO D19 V_{DDM} V_{DDM} V_{DDM} V_{DDIO} V_{DDC} TDO EE0 R HRESET D20 V_{DDIO} V_{DDIO} Т TRST V_{DDM} V_{DDC} V_{DDC} EVNT4 , TOTCK , GPIA4 A10 BA0 NC EVNTO GPIA0 GPIA28 GPID6 GPIA22 GPIA2 TDI NC A13 A11 . EVNT1 EVNT2 TORFS TOTFS GPIA3 GPIA1 GDPD4 GPIA27 GPIA19 GPIA23 H8BIT W GPIA29 , GPIA20 EVNT3 TORCK T0RD TOTD GPIA5 GPIA2 GPID5 GPIA2 GPIA2 V_{DDM} GND

Figure 3-1. MSC7110 Molded Array Process-Ball Grid Array (MAP-BGA), Top View

The display is for mask set 1L44X. For mask set 1M88B, A16 is BM3 and B15 is BM2.

3-2 Freescale Semiconductor

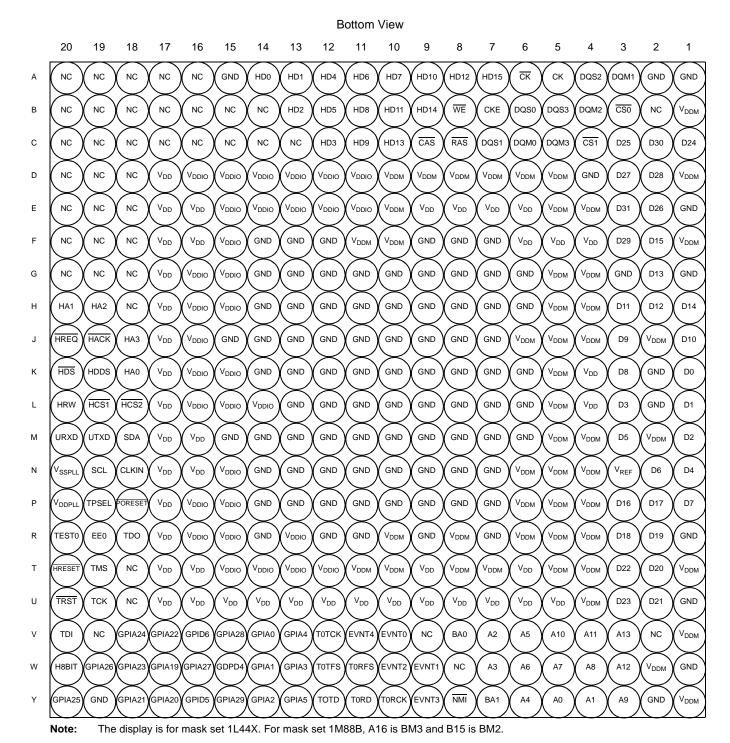


Figure 3-2. MSC7110 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View

Table 3-1. MSC7110 Signals By Name

Signal Name	Ball Designator
A0	Y5
A1	Y4
A2	V7
A3	W7
A4	Y6
A5	V6
A6	W6
A7	W5
A8	W4
A9	Y3
A10	V5
A11	V4
A12	W3
A13	V3
BA0	V8
BA1	Y7
BM0	W10
BM1	Y9
BM2 (mask set 1M88B only)	B15
BM3 (mask set 1M88B only)	A16
CAS	C9
СК	A5
CK	A6
CKE	В7
CLKIN	N18
CLKO	W9
<u>cso</u>	В3
CS1	C4
D0	K1
D1	L1
D2	M1
D3	L3
D4	N1
D5	M3
D6	N2
D7	P1
D8	КЗ
D9	J3
D10	J1

3-4 Freescale Semiconductor

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
D11	H3
D12	H2
D13	G2
D14	H1
D15	F2
D16	P3
D17	P2
D18	R3
D19	R2
D20	T2
D21	U2
D22	ТЗ
D23	U3
D24	C1
D25	С3
D26	E2
D27	D3
D28	D2
D29	F3
D30	C2
D31	E3
DBREQ	R19
DQM0	C6
DQM1	А3
DQM2	B4
DQM3	C5
DQS0	B6
DQS1	C7
DQS2	A4
DQS3	B5
EE0	R19
EVNT0	V10
EVNT1	W9
EVNT2	W10
EVNT3	Y9
EVNT4	V11
GND	A1
GND	A2
GND	A15

 Table 3-1.
 MSC7110 Signals By Name (Continued)

GND GND	D4 E1
GND	E1
GND	F7
GND	F8
GND	F9
GND	F12
GND	F13
GND	F14
GND	G1
GND	G3
GND	G6
GND	G7
GND	G8
GND	G9
GND	G10
GND	G11
GND	G12
GND	G13
GND	G14
GND	H6
GND	H7
GND	H8
GND	H9
GND	H10
GND	H11
GND	H12
GND	H13
GND	H14
GND	J7
GND	J8
GND	J9
GND	J10
GND	J11
GND	J12
GND	J13
GND	J14
GND	J15
GND	K2
GND	K6

3-6 Freescale Semiconductor

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
GND	К7
GND	К8
GND	К9
GND	K10
GND	K11
GND	K12
GND	K13
GND	K14
GND	L2
GND	L6
GND	L7
GND	L8
GND	L9
GND	L10
GND	L11
GND	L12
GND	L13
GND	M6
GND	M7
GND	M8
GND	M9
GND	M10
GND	M11
GND	M12
GND	M13
GND	M14
GND	M15
GND	N7
GND	N8
GND	N9
GND	N10
GND	N11
GND	N12
GND	N13
GND	N14
GND	P7
GND	P8
GND	P9
GND	P10

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
GND	P11
GND	P12
GND	P13
GND	P14
GND	R1
GND	R7
GND	R9
GND	R11
GND	R12
GND	R14
GND	U1
GND	W1
GND	Y2
GND	Y19
GPIA0	V14
GPIA1	W14
GPIA2	Y14
GPIA3	W13
GPIA4	V13
GPIA5	Y13
GPIA6	Y12
GPIA7	W12
GPIA8	V12
GPIA9	Y11
GPIA10	W11
GPIA11	Y10
GPIA12	M19
GPIA13	M20
GPIA14	M18
GPIA15	N19
GPIA16	V11
GPIA17	W9
GPIA19	W17
GPIA20	Y17
GPIA21	Y18
GPIA22	V17
GPIA23	W18
GPIA24	V18
GPIA25	Y20

3-8 Freescale Semiconductor

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
GPIA26	W19
GPIA27	W16
GPIA28	V15
GPIA29	Y15
GPIB11 (mask set 1M88B only)	L18
GPIC0	B11
GPIC1	C11
GPIC2	A9
GPIC3	B10
GPIC4	A8
GPIC5	C10
GPIC6	B9
GPIC7	A7
GPIC11 (mask set 1M88B only)	J18
GPIC14	W10
GPIC15	Y9
GPID4	W15
GPID5	Y16
GPID6	V16
GPID7 (mask set 1M88B only)	B15
GPID8 (mask set 1M88B only)	A16
GPOA0	V14
GPOA1	W14
GPOA2	Y14
GPOA3	W13
GPOA4	V13
GPOA5	Y13
GPOA6	Y12
GPOA7	W12
GPOA8	V12
GPOA9	Y11
GPOA10	W11
GPOA11	Y10
GPOA12	M19
GPOA13	M20
GPOA14	M18
GPOA15	N19
GPOA16	V11
GPOA17	W9

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
GPOA19	W17
GPOA20	Y17
GPOA21	Y18
GPOA22	V17
GPOA23	W18
GPOA24	V18
GPOA25	Y20
GPOA26	W19
GPOA27	W16
GPOA28	V15
GPOA29	Y15
GPOB11 (mask set 1M88B only)	L18
GPOC0	B11
GPOC1	C11
GPOC2	A9
GPOC3	B10
GPOC4	A8
GPOC5	C10
GPOC6	В9
GPOC7	A7
GPOC11 (mask set 1M88B only)	J18
GPOC14	W10
GPOC15	Y9
GPOD4	W15
GPOD5	Y16
GPOD6	V16
GPOD7 (mask set 1M88B only)	B15
GPOD8 (mask set 1M88B only)	A16
H8BIT	W20
HA0	K18
HA1	H20
HA2	H19
HA3	J18
HACK/HACK	J19
HCS1/HCS1	L19
HCS2/HCS2	L18
HD0	A14
HD1	A13
HD2	B13

3-10 Freescale Semiconductor

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
HD3	C12
HD4	A12
HD5	B12
HD6	A11
HD7	A10
HD8	B11
HD9	C11
HD10	A9
HD11	B10
HD12	A8
HD13	C10
HD14	B9
HD15	A7
HDDS	K19
HDS/HDS	K20
HDSP	J20
HRD/HRD	L20
HREQ/HREQ	J20
HRESET	T20
HRRQ/HRRQ	J19
HRW	L20
HTRQ/HTRQ	J20
HWR/HWR	K20
ĪRQ0	Y13
ĪRQ1	V13
ĪRQ2	M20
ĪRQ3	M19
ĪRQ4	Y10
ĪRQ5	W11
ĪRQ6	V12
ĪRQ7	W12
ĪRQ8	W13
ĪRQ9	Y14
ĪRQ10	W14
ĪRQ11	V14
ĪRQ12	V11
ĪRQ13	W9
ĪRQ14	N19
ĪRQ15	M18

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
IRQ16	Y15
ĪRQ17	V15
ĪRQ18	W16
ĪRQ19	W17
ĪRQ20	Y17
ĪRQ21	Y18
ĪRQ22	V17
ĪRQ23	W18
ĪRQ24	V18
ĪRQ25	Y20
ĪRQ26	W19
NC	A16
NC	A17
NC	A18
NC	A19
NC	A20
NC	B2
NC	B14
NC	B15
NC	B16
NC	B17
NC	B18
NC	B19
NC	B20
NC	C13
NC	C14
NC	C15
NC	C16
NC	C17
NC	C18
NC	C19
NC	C20
NC	D18
NC	D19
NC	D20
NC	E18
NC	E19
NC	E20
NC	F18

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
NC	F19
NC	F20
NC	G18
NC	G19
NC	G20
NC	H18
NC	T18
NC	U18
NC	V2
NC	V9
NC	V19
NC	W8
NMI	Y8
PORESET	P18
RAS	C8
SCL	N19
SDA	M18
SWTE	V11
TORCK	Y10
TORD	Y11
TORFS	W11
ТОТСК	V12
TOTD	Y12
TOTFS	W12
тск	U19
TDI	V20
TDO	R18
TEST0	R20
TMS	T19
TPSEL	P19
TRST	U20
URXD	M20
UTXD	M19
V _{DDC}	D17
V _{DDC}	E6
V _{DDC}	E7
V _{DDC}	E8
V _{DDC}	E9
V _{DDC}	E16

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
V _{DDC}	E17
V _{DDC}	F4
V _{DDC}	F5
V _{DDC}	F6
V _{DDC}	F16
V _{DDC}	F17
V _{DDC}	G17
V _{DDC}	H17
V _{DDC}	J17
V _{DDC}	K4
V _{DDC}	K17
V _{DDC}	L4
V _{DDC}	L17
V _{DDC}	M16
V _{DDC}	M17
V _{DDC}	N16
V _{DDC}	N17
V _{DDC}	P17
V _{DDC}	R17
V _{DDC}	Т6
V _{DDC}	Т9
V _{DDC}	T16
V _{DDC}	T17
V _{DDC}	U5
V _{DDC}	U6
V _{DDC}	U7
V _{DDC}	U8
V _{DDC}	U9
V _{DDC}	U10
V _{DDC}	U11
V _{DDC}	U12
V _{DDC}	U13
V _{DDC}	U14
V _{DDC}	U15
V _{DDC}	U16
V _{DDC}	U17
V _{DDIO}	D11
V _{DDIO}	D12
V _{DDIO}	D13

3-14 Freescale Semiconductor

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
V _{DDIO}	D14
V _{DDIO}	D15
V _{DDIO}	D16
$V_{\rm DDIO}$	E11
V _{DDIO}	E12
V _{DDIO}	E13
V _{DDIO}	E14
V _{DDIO}	E15
V _{DDIO}	F15
$V_{\rm DDIO}$	G15
V _{DDIO}	G16
V _{DDIO}	H15
V _{DDIO}	H16
V _{DDIO}	J16
V _{DDIO}	K15
V _{DDIO}	K16
V _{DDIO}	L14
V _{DDIO}	L15
V _{DDIO}	L16
V _{DDIO}	N15
V _{DDIO}	P15
V _{DDIO}	P16
V _{DDIO}	R13
V _{DDIO}	R15
V _{DDIO}	R16
V _{DDIO}	T12
V _{DDIO}	T13
V _{DDIO}	T14
V _{DDIO}	T15
V_{DDM}	B1
V_{DDM}	D1
V_{DDM}	D5
V_{DDM}	D6
V_{DDM}	D7
V _{DDM}	D8
V_{DDM}	D9
V_{DDM}	D10
V_{DDM}	E4
V_{DDM}	E5

 Table 3-1.
 MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator				
V _{DDM}	E10				
V _{DDM}	F1				
V _{DDM}	F10				
V_{DDM}	F11				
V _{DDM}	G4				
V _{DDM}	G5				
V_{DDM}	H4				
V _{DDM}	H5				
V _{DDM}	J2				
V _{DDM}	J4				
V_{DDM}	J5				
V _{DDM}	J6				
V _{DDM}	K5				
V _{DDM}	L5				
V _{DDM}	M2				
V_{DDM}	M4				
V_{DDM}	M5				
V _{DDM}	N4				
V _{DDM}	N5				
V _{DDM}	N6				
V_{DDM}	P4				
V _{DDM}	P5				
V_{DDM}	P6				
V_{DDM}	R4				
V _{DDM}	R5				
V _{DDM}	R6				
V _{DDM}	R8				
V _{DDM}	R10				
V _{DDM}	T1				
V _{DDM}	T4				
V _{DDM}	Т5				
V _{DDM}	Т7				
V _{DDM}	Т8				
V _{DDM}	T10				
V _{DDM}	T11				
V _{DDM}	U4				
V _{DDM}	V1				
V _{DDM}	W2				
V _{DDM}	Y1				

3-16 Freescale Semiconductor

Table 3-1. MSC7110 Signals By Name (Continued)

Signal Name	Ball Designator
V _{DDPLL}	P20
V_{REF}	N3
V _{SSPLL}	N20
WE	B8

Notes:

- 1. This table lists every signal name. Because many signals are multiplexed, an individual ball designator number may be listed several times.
- Signals listed as NC must not be connected or used as signal junction locations in board designs.
- 3. Many peripheral signals must be enabled before they can be used. Some signals are reserved after reset if they are not enabled. "Reserved" signals are not included in this list. Refer to Table 3-2 to determine which signals must be enabled after reset.

 Table 3-2.
 MSC7110 Signals by Ball Designator

	Signal Names						
Number		Software Controlled				Hardware Controlled	
rumbor	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
A1			G	ND			
A2			G	ND			
A3			DO	QM1			
A4			DC	QS2			
A5			C	CK			
A6			C	K			
A7		GPIC7		GPOC7	HI	D15	
A8		GPIC4		GPOC4	HI	D12	
A9		GPIC2		GPOC2	HI	D10	
A10		rese	rved		Н	D7	
A11		rese	rved		Н	D6	
A12		rese	rved		Н	D4	
A13		rese	rved		HD1		
A14	reserved HD0					D0	
A15			G	ND			
A16 (1L44X)			N	IC			
A16 (1M88B)	BM3 GPID8 GPOD7				reserved		
A17	NC NC						
A18			N	IC			
A19			N	IC			
A20			N	IC			
B1			V _L	DDM			
B2				IC			
В3		CS0					
B4			DC	QM2			
B5	DQS3						
B6			DC	QS0			
В7		CKE					
B8				VE			
B9		GPIC6 GPOC6 HD14					
B10		GPIC3 GPOC3				HD11	
B11		GPIC0		GPOC0	Н	D8	
B12	reserved HD5						
B13	reserved HD2						
B14				IC			
B15 (1L44X)				IC			
B15 (1M88B)	BM2	GP		GPOD7	rese	erved	
B16				IC			

3-18 Freescale Semiconductor

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names							
Number		Software Controlled				Hardware Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
B17			N	IC				
B18			N	IC				
B19			N	IC				
B20			N	IC				
C1			D	24				
C2			D	30				
C3			D	25				
C4			C	<u>S1</u>				
C5			DC	QM3				
C6			DC	QM0				
C7			DC	QS1				
C8			R	AS				
C9			C	AS				
C10		GPIC5		GPOC5	HD13			
C11		GPIC1		GPOC1	H	HD9		
C12		rese	rved		H	ID3		
C13		NC						
C14		NC						
C15		NC						
C16		NC NC						
C17			N	IC				
C18		NC						
C19			N	IC				
C20		NC						
D1			V _E	DDM				
D2		D28						
D3			D	27				
D4		GND						
D5			V _E	DDM				
D6		V _{DDM}						
D7		V _{DDM}						
D8		V_{DDM}						
D9			V _E	DDM				
D10			V _E	DDM				
D11		V _{DDIO}						
D12		V _{DDIO}						
D13		$V_{ m DDIO}$						
D14			$\overline{V_D}$	DDIO				

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names							
Number		Sc	Hardware Controlled					
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
D15			V _C	DDIO				
D16				DDIO				
D17			V _E	DDC				
D18			N	IC				
D19			N	IC				
D20			N	IC				
E1			G	ND				
E2			D	26				
E3			D	31				
E4			V _E	DDM				
E5			V _E	DDM				
E6				DDC				
E7			V _E	DDC				
E8				DDC				
E9			V _[DDC				
E10			V _E	DDM				
E11		V _{DDIO}						
E12		V _{DDIO}						
E13		V _{DDIO}						
E14				DDIO				
E15			V_{\square}	DDIO				
E16			V _[DDC				
E17			V _E	DDC				
E18		NC NC						
E19			N	IC				
E20		NC						
F1		V_{DDM}						
F2			D	15				
F3			D	29				
F4			V	DDC				
F5			V	DDC				
F6		V _{DDC}						
F7		GND						
F8			G	ND				
F9		GND						
F10			V	DDM				
F11			V	DDM				
F12				ND				

3-20 Freescale Semiconductor

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names							
Number		Software Controlled				Hardware Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
F13			G	ND				
F14			G	ND				
F15			V _C	DDIO				
F16				DDC				
F17			V _[DDC				
F18			N	IC				
F19			N	IC				
F20			N	IC				
G1			G	ND				
G2			D	13				
G3			G	ND				
G4			V _E	DDM				
G5				DDM				
G6				ND				
G7			G	ND				
G8			G	ND				
G9		GND						
G10			G	ND				
G11			G	ND				
G12			G	ND				
G13			G	ND				
G14			G	ND				
G15			V _D	DDIO				
G16		V _{DDIO}						
G17				DDC				
G18		NC NC						
G19			N	IC				
G20			N	IC				
H1			D	14				
H2			D	12				
НЗ			D	11				
H4			V _C	DDM				
H5				DDM				
H6				ND				
H7		GND						
H8		GND						
H9		GND						
H10			G	ND				

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names							
Number		Se	Hardware Controlled					
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
H11			G	ND				
H12			G	ND				
H13			G	ND				
H14			G	ND				
H15			V _D	DIO				
H16			V _D	DIO				
H17			V _[DDC				
H18			N	IC				
H19		rese	rved		H	IA2		
H20		rese	rved		Н	IA1		
J1			D	10				
J2			V _E	DDM				
J3			Γ	9				
J4			V _E	DDM				
J5			V _E	DDM				
J6			V _E	DDM				
J7		GND						
J8			G	ND				
J9			G	ND				
J10			G	ND				
J11			G	ND				
J12			G	ND				
J13			G	ND				
J14			G	ND				
J15			G	ND				
J16			V _D	DIO				
J17			V _E	DDC				
J18 (1L44X)		rese	rved		Н	IA3		
J18 (1M88B)		GPIC11		GPOC11	Н	IA3		
J19		reserved HACK/HACK or HRRQ/HRRQ						
J20	HDSP		reserved		HREQ/HREQ	or HTRQ/HTRQ		
K1			Г	00				
K2			G	ND				
K3			Г	08				
K4		V_{DDC}						
K5		V_{DDM}						
K6			G	ND				
K7			G	ND				

3-22 Freescale Semiconductor

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names						
Number		Software Controlled			Hardware Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
K8			GI	ND			
K9			GI	ND			
K10			GI	ND			
K11			GI	ND			
K12			GI	ND			
K13			GI	ND			
K14			GI	ND			
K15			V _D	DIO			
K16				DIO			
K17				DDC			
K18		rese			ŀ	HA0	
K19		rese	rved		Н	DDS	
K20		rese	rved		HDS/HDS	or HWR/HWR	
L1			Е)1			
L2			GI	ND			
L3			Е	03			
L4			V _E	DDC			
L5				DDM			
L6			GI	ND			
L7			GI	ND			
L8			GI	ND			
L9			GI	ND			
L10			GI	ND			
L11			GI	ND			
L12			GI	ND			
L13			GI	ND			
L14			V _D	OID			
L15				DIO			
L16				ODIO			
L17				DDC			
L18 (1L44X)		rese	rved		HCS	Z/HCS2	
L18 (1M88B)		GPIB11		GPOB11	HCS	Z/HCS2	
L19		rese	rved		HCS	1/HCS1	
L20		rese	rved		HRW or	HRD/HRD	
M1		D2					
M2			V _C	DDM			
M3)5			
M4			Vr	DDM			

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names						
Number		Se	oftware Controlle	ed	Hardware	Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
M5			V _C	DDM			
M6			GI	ND			
M7			GI	ND			
M8			Gl	ND			
M9			G	ND			
M10			GI	ND			
M11			GI	ND			
M12			GI	ND			
M13			GI	ND			
M14			GI	ND			
M15			GI	ND			
M16			V _E	DDC			
M17			V _E	DDC			
M18	GPI	A14	IRQ15	GPOA14	S	DA	
M19	GPIA12		ĪRQ3	GPOA12	U	TXD	
M20	GPI	A13	ĪRQ2	GPOA13	UF	RXD	
N1			С	04			
N2			Г	06			
N3			V_{F}	REF			
N4			V _C	DDM			
N5			V _C	DDM			
N6			V _C	DDM			
N7			G	ND			
N8			G	ND			
N9			G	ND			
N10			G	ND			
N11			G	ND			
N12			G	ND			
N13			GI	ND			
N14			GI	ND			
N15			V _D	DIO			
N16				DDC			
N17				DDC			
N18				KIN			
N19	GPI	A15	ĪRQ14	GPOA15	S	SCL SCL	
N20		V _{SSPLL}					
P1)7			
P2			D	17			

MSC7110 Technical Data, Rev. 9

3-24 Freescale Semiconductor

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names							
Number		Software Controlled			Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate		
P3			D	16				
P4			V _E	DDM				
P5			V _E	DDM				
P6			V _E	DDM				
P7			G	ND				
P8			G	ND				
P9			G	ND				
P10			G	ND				
P11			G	ND				
P12			G	ND				
P13			G	ND				
P14			G	ND				
P15			V _D	DDIO				
P16			V _D	DDIO				
P17			V	DDC				
P18			POR	ESET				
P19			TP	SEL				
P20			V_{DI}	DPLL				
R1			G	ND				
R2			D	19				
R3			D	18				
R4			V _E	DDM				
R5			V _E	DDM				
R6			V _E	DDM				
R7			G	ND				
R8			V _E	DDM				
R9			G	ND				
R10			V _E	DDM				
R11			G	ND				
R12			G	ND				
R13			V _D	DDIO				
R14			G	ND				
R15			V _D	DDIO				
R16			V _D	DDIO				
R17			V	DDC				
R18			TI	00				
R19		resei	ved		EE0/[DBREQ		
R20			TE	ST0				

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names						
Number		Software Controlled				Controlled	
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
T1			V _E	DDM			
T2				20			
Т3			D	22			
T4			V _E	DDM			
T5			V _E	DDM			
T6			V _[DDC			
T7			V _E	DDM			
Т8			V _E	DDM			
Т9			V	DDC			
T10			V _E	DDM			
T11			V _E	DDM			
T12			V_{\square}	DDIO			
T13			V_{\square}	DDIO			
T14			V_{\square}	DDIO			
T15			V_{\square}	DDIO			
T16			V	DDC			
T17			V _[DDC			
T18			N	IC			
T19			TI	MS			
T20			HRE	SET			
U1			G	ND			
U2			D	21			
U3			D	23			
U4			V _E	DDM			
U5			V _[DDC			
U6				DDC			
U7			V	DDC			
U8			V	DDC			
U9			V	DDC			
U10			V	DDC			
U11			V	DDC			
U12			V	DDC			
U13			V _E	DDC			
U14			V _E	DDC			
U15		V _{DDC}					
U16			V	DDC			
U17			V _E	DDC			
U18				IC			

MSC7110 Technical Data, Rev. 9

3-26 Freescale Semiconductor

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names						
Number	Software Controlled			Hardware	Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
U19			TO	CK			
U20			TR	RST			
V1			V _E	DDM			
V2			N	IC			
V3			A	13			
V4			A	11			
V5			A	10			
V6			A	\ 5			
V7			A	\ 2			
V8			В	A0			
V9			N	IC			
V10		rese	ved		EVI	NT0	
V11	SWTE	GPIA16	ĪRQ12	GPOA16	EVI	NT4	
V12	GP	IA8	ĪRQ6	GPOA8	T01	ГСК	
V13	GP	IA4	ĪRQ1	GPOA4	reserved		
V14	GP	'IAO	ĪRQ11	GPOA0	reserved		
V15	GPI	A28	ĪRQ17	GPOA28	reserved reserve		
V16		GPID6		GPOD6	reserved	reserved	
V17	GPI	A22	ĪRQ22	GPOA22	rese	rved	
V18	GPI	A24	ĪRQ24	GPOA24	rese	rved	
V19			٨	IC			
V20			Т	DI			
W1			GI	ND			
W2			V _C	DDM			
W3				12			
W4				48			
W5				A7			
W6			A	\ 6			
W7			A	\3			
W8			N	IC			
W9	GPI	A17	ĪRQ13	GPOA17	EVNT1	CLKO	
W10	BM0	GPI	C14	GPOC14	EVI	NT2	
W11	GPI	A10	ĪRQ5	GPOA10	TOF	RFS	
W12	GP	IA7	ĪRQ7	GPOA7	TO	ΓFS	
W13	GP	IA3	ĪRQ8	GPOA3	rese	rved	
W14	GP	IA1	ĪRQ10	GPOA1	rese	rved	
W15		GPID4		GPOD4	reserved	reserved	
W16	GPI	A27	ĪRQ18	GPOA27	reserved	reserved	

Packaging

 Table 3-2.
 MSC7110 Signals by Ball Designator (Continued)

	Signal Names						
Number	Software Controlled				Hardware Controlled		
	End of Reset	GPI Enabled (Default)	Interrupt Enabled	GPO Enabled	Primary	Alternate	
W17	GP	A19	ĪRQ19	GPOA19	rese	rved	
W18	GP	A23	ĪRQ23	GPOA23	rese	rved	
W19	GP	A26	ĪRQ26	GPOA26	rese	rved	
W20	H8BIT			reserved			
Y1			V _C	DDM			
Y2			GI	ND			
Y3			Д	1 9			
Y4			A	\1			
Y5			A	۸0			
Y6			A	λ4			
Y7			В	A1			
Y8	rese	erved	NMI		reserved		
Y9	BM1	GPI	C15	GPOC15	EVN	IT3	
Y10	GP	A11	ĪRQ4	GPOA11	T0R	CK	
Y11		GPIA9		GPOA9	TOF	RD	
Y12		GPIA6		GPOA6	T0 ⁻	ΓD	
Y13	GF	IA5	ĪRQ0	GPOA5	rese	rved	
Y14	GF	IA2	ĪRQ9	GPOA2	rese	rved	
Y15	GP	A29	ĪRQ16	GPOA29	reserved	reserved	
Y16		GPID5		GPOD5	reserved	reserved	
Y17	GP	A20	IRQ20	GPOA20	rese	rved	
Y18	GP	GPIA21 IRQ21 GPOA21 reserved				rved	
Y19			GI	ND			
Y20	GP	A25	IRQ25	GPOA25	rese	rved	

3-28 Freescale Semiconductor

3.2 MAP-BGA Package Mechanical Drawing

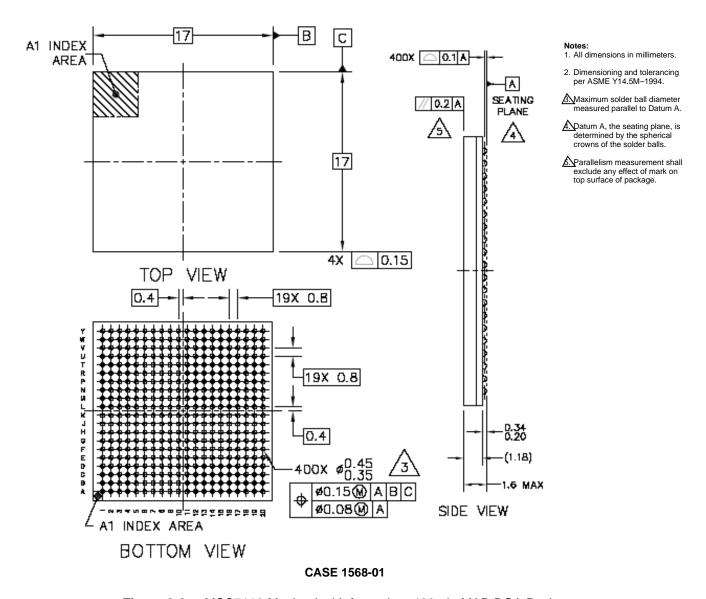


Figure 3-3. MSC7110 Mechanical Information, 400-pin MAP-BGA Package

Packaging

MSC7110 Technical Data, Rev. 9

3-30 Freescale Semiconductor

Design Considerations

4

This section described various areas to consider when incorporating the MSC7110 device into a system design.

4.1 Thermal Design Considerations

An estimation of the chip-junction temperature, T_I, in °C can be obtained from the following:

$$T_{J} = T_{A} + (R_{\Theta JA} \times P_{D})$$
 Equation 1

where

 T_A = ambient temperature near the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 $P_D = P_{INT} + P_{I/O} =$ power dissipation in the package (W)

 $P_{INT} = I_{DD} \times V_{DD} = internal power dissipation (W)$

P_{I/O} = power dissipated from device on output pins (W)

The power dissipation values for the MSC7110 are listed in **Table 2-3**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip.

You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine T_J :

$$T_J = T_T + (\Psi_{JT} \times P_D)$$
 Equation 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 Ψ_{JT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

4.2 Power Supply Design Considerations

This section outlines the MSC7110 power considerations: power supply, power sequencing, power planes, decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to **Chapter 2**.

• Power Supply. The MSC7110 requires four input voltages, as shown in **Table 4-1**.

Voltage	Symbol	Value
Core	V _{DDC}	1.2 V
Memory	V_{DDM}	2.5 V
Reference	V _{REF}	1.25 V
I/O	V _{DDIO}	3.3 V

Table 4-1. MSC7110 Voltages

You should supply the MSC7110 core voltage via a variable switching supply or regulator to allow for compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and –10%) across V_{DDC} and GND and the I/O section is supplied with 3.3 V (± 10%) across V_{DDIO} and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is supplied with 2.5 V across V_{DDM} and GND. The reference voltage is supplied across V_{REF} and GND and must be between $0.49 \times V_{DDM}$ and $0.51 \times V_{DDM}$. Refer to the JEDEC standard JESD8 (*Stub Series Terminated Logic for 2.5 Volts* (STTL_2)) for memory voltage supply requirements.

- *Power sequencing*. One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied. The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents, which all lead to severe device damage. The correct power-up sequence is as follows:
 - Turn on the highest supply first (3.3 V).
 - Turn on the 2.5 V supply.
 - Turn on the lowest supply last (1.2 V).

The correct power-down sequence is as follows:

- Turn off the lowest supply first (1.2 V).
- Turn off the 2.5 V supply.
- Turn off the highest supply last (3.3 V).

At any instant during power-up and power-down, the 2.5 V supply must maintain a differential of +0.7 V or more below the 3.3 V supply. Also, at any instant, the 1.2 V supply must maintain a differential of +0.7 V or more below the 2.5 V supply, as shown in **Figure 4-1**. The power-down sequence is not as critical as the power-up sequence.

4-2 Freescale Semiconductor

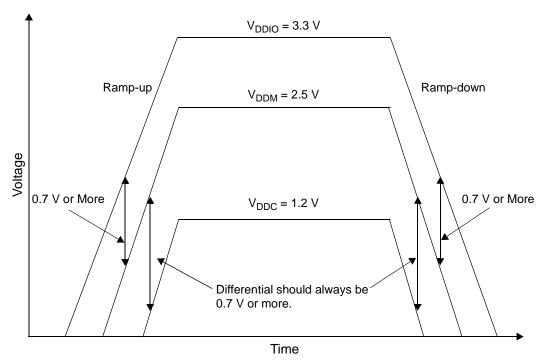


Figure 4-1. Voltage Sequencing

- Power planes. Each power supply pin (V_{DDC}, V_{DDM}, and V_{DDIO}) should have a low-impedance path to the board power supply. Each GND pin should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the device. The MSC7110 V_{DDC} power supply pins should be bypassed to ground using decoupling capacitors. The capacitor leads and associated printed circuit traces connecting to device power pins and GND should be kept to less than half an inch per capacitor lead. A minimum four-layer board that employs two inner layers as power and GND planes is recommended. See Section 4.5 for DDR Controller power guidelines.
- Decoupling. Both the I/O voltage and core voltage should be decoupled for switching noise. For I/O decoupling, use standard capacitor values of 0.01 μF for every two to three voltage pins. For core voltage decoupling, use two levels of decoupling. The first level should consist of a 0.01 μF high frequency capacitor with low effective series resistance (ESR) and effective series inductance (ESL) for every two to three voltage pins. The second decoupling level should consist of two bulk/tantalum decoupling capacitors, one 10 μF and one 47 μF, (with low ESR and ESL) mounted as closely as possible to the MSC7110 voltage pins. Additionally, the maximum drop between the power supply and the DSP device should be 15 mV at 1 A.
- *PLL power supply filtering*. The MSC7110 V_{DDPLL} power signal provides power to the clock generation PLL. To ensure stability of the internal clock, the power supplied to this pin should be filtered with capacitors that have low and high frequency filtering characteristics. V_{DDPLL} can be connected to V_{DDC} through a 20 Ω resistor. V_{SSPLL} can be tied directly to the GND plane. A circuit similar to the one shown in **Figure 4-2** is recommended. The PLL loop filter should be placed as closely as possible to the V_{DDPLL} pin (which are located on the outside edge of the silicon package) to minimize noise coupled from nearby circuits. The 0.01 μ F capacitor should be closest to V_{DDPLL} , followed by the 0.1 μ F capacitor, the 10 μ F capacitor, and finally the 20- Ω resistor to V_{DDC} . These traces should be kept short. V_{CCSYN} and V_{CCSYN1} should be bypassed to ground by 0.1 μ F and 47 μ F capacitors located as closely as possible to the device package.

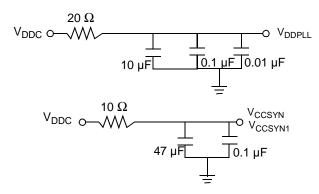


Figure 4-2. PLL Power Supply Filter Circuits

- *Power consumption*. You can reduce power consumption in your design by controlling the power consumption of the following regions of the device:
 - Extended core. Use the SC1400 Stop and Wait modes by issuing a **stop** or **wait** instruction.
 - *Clock synthesis module.* Disable the PLL, timer, watchdog, or DDR clocks or disable the CLKO pin.
 - AHB subsystem. Freeze or shut down the AHB subsystem using the GPSCTL[XBR_HRQ] bit.
 - *Peripheral subsystem.* Halt the individual on-device peripherals such as the DDR memory controller, Ethernet MAC, HDI16, TDM, UART, I²C, and timer modules.

For details, see the "Clocks and Power Management" chapter of the MSC711x Reference Manual.

• *Power supply design*. One of the most common ways to derive power is to use either a simple fixed or adjustable linear regulator. For the system I/O voltage supply, a simple fixed 3.3 V supply can be used. However, a separate adjustable linear regulator supply for the core voltage VDDC should be implemented. For the memory power supply, regulators are available that take care of all DDR power requirements. **Table 4-2** lists the recommended current rating for each supply per device supported.

Supply	Symbol	Nominal Voltage	Current Rating			
Core	V _{DDC}	1.2 V	1.5 A per device			
Memory	V _{DDM}	2.5 V	0.5 A per device			
Reference	V _{REF}	1.25 V	10 μA per device			
1/0	Vanio	33V	1.0 A per device			

Table 4-2. Recommended Power Supply Ratings

4.3 Estimated Power Usage Calculations

The following equations permit estimated power usage to be calculated for individual design conditions. Overall power is derived by totaling the power used by each of the major subsystems:

$$P_{\text{TOTAL}} = P_{\text{CORE}} + P_{\text{PERIPHERALS}} + P_{\text{DDRIO}} + P_{\text{IO}} + P_{\text{LEAKAGE}}$$
 Equation 3

This equation combines dynamic and static power. Dynamic power is determined using the generic equation:

$$C \times V^2 \times F \times 10^{-3} \text{ mW}$$
 Equation 4

where,

C = load capacitance in pF

V = peak-to-peak voltage swing in V

F = frequency in MHz

MSC7110 Technical Data, Rev. 9

4-4 Freescale Semiconductor

4.3.1 Core Power

Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core load capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 200 MHz or 266 MHz. This yields:

$$P_{CORE} = 750 \text{ pF} \times (1.2 \text{ V})^2 \times 200 \text{ MHz} \times 10^{-3} = 216 \text{ mW}$$
 Equation 5
 $P_{CORE} = 750 \text{ pF} \times (1.2 \text{ V})^2 \times 266 \text{ MHz} \times 10^{-3} = 287 \text{ mW}$ Equation 6

This equation allows for adjustments to voltage and frequency if necessary.

4.3.2 Peripheral Power

Peripherals include the DDR memory controller, DMA controller, HDI16, TDM, UART, timers, GPIOs, and the I^2C module. Basic power consumption by each module is assumed to be the same and is computed by using the following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching frequency of 100 MH or 133 MHz. This yields:

$$P_{PERIPHERAL} = 20 \text{ pF} \times (1.2 \text{ V})^2 \times 100 \text{ MHz} \times 10^{-3} = 2.88 \text{ mW per peripheral}$$
 Equation 7
$$P_{PERIPHERAL} = 20 \text{ pF} \times (1.2 \text{ V})^2 \times 133 \text{ MHz} \times 10^{-3} = 3.83 \text{ mW per peripheral}$$
 Equation 8

Multiply this value by the number of peripherals used in the application to compute the total peripheral power consumption.

4.3.3 External Memory Power

Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal line usage, termination and load levels, and switching rates. Because the DDR memory includes terminations external to the MSC7110 device, the 2.5 V power source provides the power for the termination, which is a static value of 16 mA per signal driven high. The dynamic power is computed, however, using a differential voltage swing of ± 0.200 V, yielding a peak-to-peak swing of 0.4 V. The equations for computing the DDR power are:

$P_{\text{DDRIO}} = P_{\text{STATIC}} + P_{\text{DYNAMIC}}$	Equation 9
$P_{STATIC} = (unused pins \times \% driven high) \times 16 mA \times 2.5 V$	Equation 10
$P_{DYNAMIC} = (pin activity value) \times 20 pF \times (0.4 V)^2 \times 200 MHz \times 10^{-3} mW$	Equation 11
$P_{DYNAMIC} = (pin activity value) \times 20 pF \times (0.4 V)^2 \times 266 MHz \times 10^{-3} mW$	Equation 12
pin activity value = (active data lines \times % activity \times % data switching) + (active address lines \times % activity)	Equation 13

As an example, assume the following:

```
unused pins = 16 (DDR uses 16-pin mode)

% driven high = 50%

active data lines = 16

% activity = 60%

% data switching = 50%

active address lines = 3
```

In this example, the DDR memory power consumption is:

```
\begin{split} P_{DDRIO} &= ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 200 \times 10^{-3}) = 324.2 \text{ mW} \\ P_{DDRIO} &= ((16 \times 0.5) \times 16 \times 2.5) + (((16 \times 0.6 \times 0.5) + (3 \times 0.6)) \times 20 \times (0.4)^2 \times 266 \times 10^{-3}) = 326.3 \text{ mW} \\ \end{split}
```

4.3.4 External I/O Power

The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power consumption per signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a switching frequency of 25 MHz or 33 MHz, which yields:

$$P_{IO} = 20 \text{ pF} \times (3.3 \text{ V})^2 \times 25 \text{ MHz} \times 10^{-3} = 5.44 \text{ mW per I/O line}$$
 Equation 16
 $P_{IO} = 20 \text{ pF} \times (3.3 \text{ V})^2 \times 33 \text{ MHz} \times 10^{-3} = 7.19 \text{ mW per I/O line}$ Equation 17

Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O power.

Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be as low as 7 pF.

4.3.5 Leakage Power

The leakage power is for all power supplies combined at a specific temperature. The value is temperature dependent. The observed leakage value at room temperature is 64 mW.

4.3.6 Example Total Power Consumption

Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power consumption value is estimated as the following:

$$P_{TOTAL}$$
 (200 MHz core) = 216 + (4 × 2.88) + 324,2 + (10 × 5.44) + 64 = 670.12 mW Equation 18
 P_{TOTAL} (266 MHz core) = 287 + (4 × 3.83) + 326.3 + (10 × 7.19) + 64 = 764.52 mW Equation 19

4.4 Reset and Boot

This section describes the recommendations for configuring the MSC7110 at reset and boot.

4.4.1 Reset Circuit

 $\overline{\text{HRESET}}$ is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain device. For an open-drain output such as $\overline{\text{HRESET}}$, take care when driving many buffers that implement input bushold circuitry. The bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic level to low. Either a smaller value of pull-up or less current loading from the bus-hold drivers overcomes this issue. To avoid exceeding the MSC7110 output current, the pull-up value should not be too small (a 1 KΩ pull-up resistor is used in the MSC711xADS reference design).

4.4.2 Reset Configuration Pins

Table 4-3 shows the MSC7110 reset configuration signals. These signals are sampled at the deassertion (rising edge) of PORESET. For details, refer to the Reset chapter of the MSC711x Reference Manual.

 Signal
 Description
 Settings

 BM[1–0]
 Determines boot mode.
 0
 Boot from HDI16 port.

 01
 Boot from I2C.

Table 4-3. Reset Configuration Signals

MSC7110 Technical Data, Rev. 9

Reserved.

4-6 Freescale Semiconductor

Table 4-3. Reset Configuration Signals (Continued)

Signal	Description	Settings
SWTE	Determines watchdog functionality.	0 Watchdog timer disabled.
		1 Watchdog timer enabled.
HDSP	Configures HDI16 strobe polarity.	Host Data strobes active low.
		1 Host Data strobes active high.
H8BIT	Configures HDI16 operation mode.	0 HDI16 port configured for 16-bit operation.
		1 HDI16 port configured for 8-bit operation.

4.4.3 Boot

After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Using this input clock, the system initializes using the boot loader program that resides in the internal ROM. After initialization, the DSP core can enable the PLL and start the device operating at a higher speed. The MSC7110 can boot from an external host through the HDI16 or download a user program through the I²C port. The boot operating mode is set by configuring the BM[1–0] signals sampled at the rising edge of PORESET, as shown in **Table 4-4**.

BM0 Boot Source

0 External host via HDI16 with the PLL disabled.

Table 4-4. Boot Mode Settings

1 0 External host via the HDI16 with the PLL enabled. 1 1 Reserved.

4.4.3.1 HDI16 Boot

BM₁

n

0

If the MSC7110 device boots from an external host through the HDI16, the port is configured as follows:

- Operate in Non-DMA mode.
- Operate in polled mode on the device side.
- Operate in polled mode on the external host side.
- External host must write four 16-bit values at a time with the first word as the most significant and the fourth word as the least significant.

When booting from a power-on reset, the HDI16 is additionally configurable as follows:

- 8- or 16-bit mode as specified by the H8BIT pin.
- Data strobe as specified by the HDSP and HDDS pins.

These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the configuration of these pins is unaffected.

Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most significant bit as for other DSP products.

4.4.3.2 I²C Boot

When the MSC7110 device is configured to boot from the I^2C port, the boot program configures the GPIO pins shared with the I^2C pins as I^2C pins. The I^2C interface is configured as follows:

• I²C in master mode.

MSC7110 Technical Data, Rev. 9

• EPROM in slave mode.

For details on the boot procedure, see the "Boot Program" chapter of the MSC711x Reference Manual.

4.5 DDR Memory System Guidelines

MSC7110 devices contain a memory controller that provides a glueless interface to external double data rate (DDR) SDRAM memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two termination techniques, as shown in **Figure 4-3**. Technique B is the most popular termination technique.

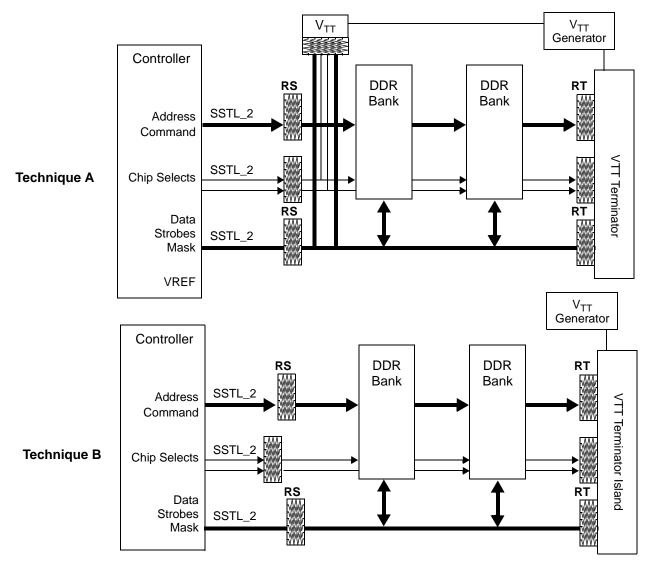


Figure 4-3. SSTL Termination Techniques

4-8 Freescale Semiconductor

Figure 4-4 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:

- $RS = 22 \Omega$
- RT = 24 Ω

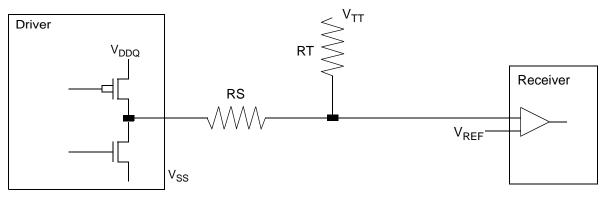


Figure 4-4. SSTL Power Value

4.5.1 V_{REF} and V_{TT} Design Constraints

 V_{TT} and V_{REF} are isolated power supplies at the same voltage, with V_{TT} as a high current power source. This section outlines the voltage supply design needs and goals:

- Minimize the noise on both rails.
- V_{TT} must track variation in the V_{REF} DC offsets. Although they are isolated supplies, one possible solution is to
 use a single IC to generate both signals.
- Both references should have minimal drift over temperature and source supply.
- It is important to minimize the noise from coupling onto V_{REF} as follows:
 - Isolate V_{REF} and shield it with a ground trace.
 - Use 15–20 mm track.
 - Use 20–30 mm clearance between other traces for isolating.
 - Use the outer layer route when possible.
 - Use distributed decoupling to localize transient currents and return path and decouple with an inductance less than 3 nH.
- Max source/sink transient currents of up to 1.8 A for a 32-bit data bus.
- Use a wide island trace on the outer layer:
 - Place the island at the end of the bus.
 - Decouple both ends of the bus.
 - Use distributed decoupling across the island.
 - Place SSTL termination resistors inside the V_{TT} island and ensure a good, solid connection.
- Place the V_{TT} regulator as closely as possible to the termination island.
 - Reduce inductance and return path.
 - Tie current sense pin at the midpoint of the island.

4.5.2 Decoupling

The DDR decoupling considerations are as follows:

- DDR memory requires significantly more burst current than previous SDRAMs.
- In the worst case, up to 64 drivers may be switching states.
- Pay special attention and decouple discrete ICs per manufacturer guidelines.
- Leverage V_{TT} island topology to minimize the number of capacitors required to supply the burst current needs of the termination rail.
- See the Micron DesignLine publication entitled *Decoupling Capacitor Calculation for a DDR Memory Channel* (http://download.micron.com/pdf/pubs/designline/3Q00dl1-4.pdf).

4.5.3 General Routing

The general routing considerations for the DDR are as follows:

- All DDR signals must be routed next to a solid reference:
 - For data, next to solid ground planes.
 - For address/command, power planes if necessary.
- All DDR signals must be impedance controlled. This is system dependent, but typical values are 50–60 ohm.
- Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing between all DDR signals to non-DDR signals.
- Keep the number of vias to a minimum to eliminate additional stubs and capacitance.
- Signal group routing priorities are as follows:
 - DDR clocks.
 - Route MVTT/MVREF.
 - Data group.
 - Command/address.
- Minimize data bit jitter by trace matching.

4.5.4 Routing Clock Distribution

The DDR clock distribution considerations are as follows:

- DDR controller supports six clock pairs:
 - 2 DIMM modules.
 - Up to 36 discrete chips.
- For route traces as for any other differential signals:
 - Maintain proper difference pair spacing.
 - Match pair traces within 25 mm.
- Match all clock traces to within 100 mm.
- Keep all clocks equally loaded in the system.
- Route clocks on inner critical layers.

MSC7110 Technical Data, Rev. 9

4-10 Freescale Semiconductor

4.5.5 Data Routing

The DDR data routing considerations are as follows:

- Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.
- Take care to match trace lengths, which is extremely important.
- To make trace matching easier, let adjacent groups be routed on alternate critical layers.
- Pin swap bits within a byte group to facilitate routing (discrete case).
- Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal within \pm 25 mm of its respective strobe.
- Minimize lengths across the entire DDR channel:
 - Between all groups maintain a delta of no more than 500 mm.
 - Allows greater flexibility in the design for readjustments as needed.
- DDR data group separation:
 - If stack-up allows, keep DDR data groups away from the address and control nets.
 - Route address and control on separate critical layers.
 - If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.

4.6 Connectivity Guidelines

This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7110 device. Following are guidelines for signal groups and configuration settings:

- Clock and reset signals.
 - SWTE is used to configure the MSC7110 device and is sampled on the deassertion of PORESET, so it should be tied to V_{DDC} or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After PORESET, this signal can be left floating.
 - BM[0–1] configure the MSC7110 device and are sampled until PORESET is deasserted, so they should be tied to V_{DDIO} or GND either directly or through pull-up or pull-down resistors.
 - HRESET should be pulled up.
- *Interrupt signals*. When used, IRQ pins must be pulled up.
- HDI16 signals.
 - When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor. However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with the HRESET signal as the enable.
 - When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down, depending on the required boot mode settings.
- Ethernet MAC/TDM2 signals. The MDIO signal requires an external pull-up resistor.
- I^2C signals. The SCL and SDA signals, when programmed for I^2C , requires an external pull-up resistor.
- General-purpose I/O (GPIO) signals. An unused GPIO pin can be disconnected. After boot, program it as an output pin.

Design Considerations

- Other signals.
 - The $\overline{\text{TEST0}}$ pin must be connected to ground.
 - The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary scan.
 - Pins labelled NO CONNECT (NC) must not be connected.
 - When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating) if the used lines are terminated.
 - Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT pins, and DBREQ to HRRQ.

Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Supply Voltage	Package Type	Pin Count	Core Frequency (MHz)	Solder Spheres	Order Number
MSC7110 1.2 V core (mask 2.5 V mem. 1L44X 3.3 V I/O		Molded Array Process-Ball Grid Array (MAP-BGA)	400	200	Lead-free	MSC7110VM800
	7 may (1971 2071)			Lead-bearing	MSC7110VF800	
MSC7110 1.2 V core (mask 2.5 V mem 1M88B) 3.3 V I/O		Molded Array Process-Ball Grid Array (MAP-BGA)	400	266	Lead-free	MSC7110VM1000
	Triay (iii.ii 557)			Lead-bearing	MSC7110VF1000	

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations not listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GMBH Technical Information Center Schatzbogen 7 81829 München, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T. Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™], the Freescale logo, CodeWarrior, and fieldBIST are trademarks of Freescale Semiconductor, Inc. StarCore is a trademark of StarCore LLC. The StarCore SC1400 core is based on StarCore technology under license from StarCore LLC. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2004, 2006.

11/2006