$2,048 \times 18$, and $4,096 \times 18$

IDT72205LB, IDT72215LB,
IDT72225LB, IDT72235LB, IDT72245LB

FEATURES:

- 256×18-bit organization array (IDT72205LB)
- 512×18-bit organization array (IDT72215LB)
- $1,024 \times 18$-bit organization array (IDT72225LB)
- $2,048 \times 18$-bit organization array (IDT72235LB)
- $4,096 \times 18$-bit organization array (IDT72245LB)
- 10 ns read/write cycle time
- Empy and Full flags signal FIFO status
- Easy expandable in depth and width
- Asynchronous or coincident read and write clocks
- Programmable Almost-Empty and Almost-Full flags with default settings
- Half-Full flag capability
- Dual-Port zero fall-through time architecture
- Output enable puts output data bus in high-impedence state
- High-performance submicron CMOS technology
- Available in a 64-lead thin quad flatpack (TQFP/STQFP) and plastic leaded chip carrier (PLCC)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available
- Green parts available, see ordering information

DESCRIPTION:

The IDT72205LB/72215LB/72225LB/72235LB/72245LB are very high speed, low-power First-In, First-Out(FIFO) memories with clocked read and
write controls. These FIFOs are applicable for a wide variety of data buffering needs, such as optical disk controllers, Local Area Networks (LANs), and interprocessorcommunication.

These FIFOs have 18-bitinputand outputports. The inputport is controlled by a free-running clock (WCLK), and an inputenable pin ($\overline{\mathrm{WEN}}$). Data is read into the synchronous FIFO on every clock when WEN is asserted. The output port is controlled by another clock pin (RCLK) and another enable pin ($\overline{\mathrm{REN}}$). The read clock can be tied to the write clock for single clock operation or the two clocks can run asynchronous of one anotherfordual-clock operation. An Output Enable pin $(\overline{\mathrm{OE}})$ is provided on the read port for three-state control of the output.

The synchronous FIFOs have two fixed flags, Empty ($\overline{\mathrm{EF}}$) and Full ($\overline{\mathrm{FF}}$), and two programmableflags, Almost-Empty ($\overline{\mathrm{PAE}})$ and Almost-Full $(\overline{\mathrm{PAF}})$. The offsetloading ofthe programmableflags is controlled by a simple state machine, and is initiated by asserting the Load pin ($\overline{\mathrm{LD}})$. A Half-Full flag ($\overline{\mathrm{HF}})$ is available when the FIFO is used in a single device configuration.

These devices are depth expandable using a Daisy-Chaintechnique. The $\overline{\mathrm{XI}}$ and $\overline{\mathrm{XO}}$ pins are used to expand the FIFOs. In depth expansion configuration, First Load ($\overline{\mathrm{FL}})$ is grounded on the first device and set to HIGH for all other devices in the Daisy Chain.

The IDT72205LB/72215LB/72225LB/72235LB/72245LB is fabricated using high-speed submicron CMOS technology.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PLCC (J68-1, order code: J) TOP VIEW

TQFP (PN64-1, order code: PF) STQFP (PP64-1, order code: TF)

TOP VIEW

PIN DESCRIPTION

Symbol	Name	I/0	Description
D0-D17	Datalnputs	1	Datainputs fora 18-bit bus.
$\overline{\mathrm{RS}}$	Reset	1	When $\overline{\mathrm{RS}}$ is setLOW, internal read and write pointers are setto the firstlocation of the RAM array, $\overline{\mathrm{FF}}$ and $\overline{\mathrm{PAF}}$ go HIGH, and $\overline{\mathrm{PAE}}$ and $\overline{\mathrm{EF}}$ go LOW. A reset is required before an initial WRITE after power-up.
WCLK	WriteClock	1	When $\overline{W E N}$ is LOW, data is written into the FIFO onaLOW-to-HIGH transition of WCLK, ifthe FIFO is notfull.
$\overline{\text { WEN }}$	WriteEnable	1	When WEN is LOW and LD is HIGH, data is written into the FIFO on every LOW-to-HIGH transition of WCLK. When $\overline{\text { WEN }}$ is HIGH, the FIFO holds the previous data. Data will not be written into the FIFO if the $\overline{\mathrm{FF}}$ isLOW.
RCLK	Read Clock	1	When REN is LOW, datais read from the FIFO onaLOW-to-HIGHtransition of RCLK, ifthe FIFO is notempty.
REN	Read Enable	1	When $\overline{\text { REN }}$ is LOW, and $\overline{\text { LD }}$ is HIGH, data is read from the FIFO on every LOW-to-HIGH transition of RCLK. When $\overline{R E N}$ is HIGH, the output register holds the previous data. Data will not be read from the FIFO if the EF isLOW.
$\overline{\mathrm{OE}}$	OutputEnable	1	When $\overline{\text { OE }}$ is LOW, the data output bus is active. If $\overline{\mathrm{OE}}$ is HIGH, the output data bus will be in ahigh-impedance state.
$\overline{\text { LD }}$	Load	I	When $\overline{\mathrm{LD}}$ is LOW, data on the inputs D0-D11 is written to the offsetand depth registers on the LOW-to-HIGH transition of the WCLK, when $\overline{W E N}$ is LOW. When $\overline{L D}$ is LOW, data on the outputs QO-Q11 is read from the offsetand depth registers on the LOW-to-HIGH transition of the RCLK, when REN is LOW.
$\overline{\mathrm{F}}$	FirstLoad	I	Inthe single device orwidth expansion configuration, $\overline{\mathrm{FL}}$ is grounded. Inthe depth expansion configuration, $\overline{\mathrm{FL}}$ is grounded on the first device (first load device) and set to HIGH for all other devices in the Daisy Chain.
$\overline{\mathrm{WXI}}$	Write Expansion	I	In the single device or width expansion configuration, $\overline{W X I}$ is grounded. In the depth expansion configuration, $\overline{W X I}$ is connected to $\overline{W X O}$ (Write Expansion Out) of the previous device.
RXI	Read Expansion	I	In the single device or width expansion configuration, $\overline{\mathrm{RXI}}$ is grounded. Inthe depth expansion configuration, $\overline{\mathrm{RXI}}$ is connected to $\overline{\mathrm{RXO}}$ (Read Expansion Out) of the previous device.
$\overline{\mathrm{F}}$ F	Full Flag	0	When $\overline{F F}$ is LOW, the FIFO is full and further data writes into the inputare inhibited. When FF is HIGH, the FIFO is not full. FF is synchronized to WCLK.
EF	Empty Flag	0	When $\overline{\mathrm{EF}}$ is LOW, the FIFO is empty and further data reads from the outputare inhibited. When $\overline{\mathrm{EF}}$ is HIGH , the FIFO is not empty. EF is synchronized to RCLK.
$\overline{\text { PAE }}$	Programmable Almost-EmptyFlag	0	When $\overline{\text { PAE }}$ is LOW, the FIFO is almostempty based on the offset programmed into the FIFO. The default offset at resetis 31 from empty for IDT72205LB, 63 from empty for IDT72215LB, and 127 from empty for IDT72225LB/72235LB/72245LB.
$\overline{\text { PAF }}$	Programmable Almost-Full Flag	0	When $\overline{\text { PAF is }}$ LOW, the FIFO is almost-full based on the offset programmed into the FIFO. The default offsetat reset is 31 from full for IDT72205, 63 from full for IDT72215LB, and 127 from full for IDT72225LB/72235LB/ 72245LB.
$\overline{\mathrm{WXO}} / \overline{\mathrm{HF}}$	Write Expansion Out/Half-Full Flag	0	In the single device or width expansion configuration, the device is more than half full when $\overline{H F}$ is LOW. In the depth expansion configuration, apulse is sentrom $\overline{W X O}$ to $\overline{W X I}$ ofthe nextdevice when the lastlocation in the FIFO is written.
$\overline{\mathrm{RXO}}$	Read Expansion Out	0	In the depth expansion configuration, a pulse is sent from $\overline{\mathrm{RXO}}$ to $\overline{\mathrm{RXI}}$ of the next device when the last location in the FIFO is read.
Q0-Q17	DataOutputs	0	Data outputs for an 18-bitbus.
Vcc	Power		+5V power supply pins.
GND	Ground		Eight ground pins for the PLCC and seven gound pins for the TQFP/STQFP.

ABSOLUTE MAXIMUM RATINGS

Symbol	Rating	Commercial	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to +7.0	V
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
IouT	DCOutputCurrent	-50 to +50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage Commercial/Industrial	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
VIH	InputHigh Voltage Commercial/Industrial	2.0	-	-	V
VIL $^{(1)}$	InputLowVoltage Commercial/Industrial	-	-	0.8	V
TA	Operating Temperature Commercial	0	-	70	${ }^{\circ} \mathrm{C}$
TA	OperatingTemperature Industrial	-40	-	85	${ }^{\circ} \mathrm{C}$

NOTE:

1. 1.5 V undershoots are allowed for 10 ns once per cycle.

DC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VcC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VcC}=5 \mathrm{~V} \pm 10 \% \mathrm{~V}, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	IDT72205LBIDT72215LBIDT72225LBIDT72235LBIDT72245LBCommercial and Industrial ${ }^{(1)}$tcLK $=10,15,25 \mathrm{~ns}$			Unit
		Min.	Typ.	Max.	
lıL(2)	InputLeakage Current(any input)	-1	-	1	$\mu \mathrm{A}$
ILO(3)	OutputLeakage Current	-10	-	10	$\mu \mathrm{A}$
Voh	Output Logic "1" Voltage, IOH = -2 mA	2.4	-	-	V
Vol	Output Logic "0" Voltage, IoL $=8 \mathrm{~mA}$	-	-	0.4	V
Icc1 ${ }^{(4,5,6)}$	Active Power Supply Current	-	-	60	mA
Icc2 ${ }^{(4,7)}$	StandbyCurrent	-	-	5	mA

NOTES:

1. Industrial Temperature Range Product for the 15 ns and the 25 ns speed grades are available as a standard device.
2. Measurements with $0.4 \leq \mathrm{V} \mathbb{N} \leq \mathrm{Vcc}$.
3. $\overline{\mathrm{OE}} \geq \mathrm{V} \mathrm{IH}, 0.4 \leq$ Vout $\leq \mathrm{Vcc}$.
4. Tested with outputs disabled (lout $=0$).
5. RCLK and WCLK toggle at 20 MHZ and data inputs switch at 10 MHz .
6. For the IDT72205/72215/72225 the typical IcC1 $=1.81+1.12^{*} f \mathrm{fs}+0.02^{*} \mathrm{C}^{*}$ fs (in mA); for the IDT72235/72245 the typical IcC1 $=2.85+1.30^{*} f s+0.02^{*} C L^{*} f s$ (in mA) These equations are valid under the following conditions:
$\mathrm{Vcc}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, fs $=$ WCLK frequency $=$ RCLK frequency (in MHz , using TTL levels), data switching at $\mathrm{fs} / 2, \mathrm{CL}=$ capacitive load (in pF).
7. All Inputs $=\mathrm{Vcc}-0.2 \mathrm{~V}$ or GND +0.2 V , except RCLK and WCLK, which toggle at 20 MHz .

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Max.	Unit
$\mathrm{CIN}^{(2)}$	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	10	pF
CouT $^{(1,2)}$	Output Capacitance	VoUT = OV	10	pF

NOTES:

1. With output deselected, ($\overline{\mathrm{OE}} \geq \mathrm{V} \boldsymbol{H}$).
2. Characterized values, not currently tested.

AC ELECTRICAL CHARACTERISTICS

(Commercial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$; Industrial: $\mathrm{VCC}=5 \mathrm{~V} \pm 10 \%, \mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter			Commercial \& Industria[${ }^{(1)}$				Unit
		IDT72205LB10 IDT72215LB10 IDT72225LB10 IDT72235LB10 IDT72245LB10		IDT72205LB15 IDT72215LB15 IDT72225LB15 IDT72235LB15 IDT72245LB15		IDT72205LB25 IDT72215LB25 IDT72225LB25 IDT72235LB25 IDT72245LB25		
		Min.	Max.	Min.	Max.	Min.	Max.	
fs	Clock Cycle Frequency	-	100	-	66.7	-	40	MHz
ta	Data Access Time	2	6.5	2	10	2	15	ns
tclk	Clock Cycle Time	10	-	15	-	25	-	ns
tcLKH	Clock HIGH Time	4.5	-	6	-	10	-	ns
tcıkL	Clock LOW Time	4.5	-	6	-	10	-	ns
tos	DataSet-up Time	3	-	4	-	6	-	ns
toh	Data Hold Time	0	-	1	-	1	-	ns
tens	Enable Set-up Time	3	-	4	-	6	-	ns
tenh	Enable Hold Time	0	-	1	-	1	-	ns
trs	ResetPulseWidth ${ }^{(2)}$	10	-	15	-	25	-	ns
tRSs	ResetSet-up Time	8	-	10	-	15	-	ns
trsR	ResetRecovery Time	8	-	10	-	15	-	ns
tRSF	Resetto Flag and Output Time	-	15	-	20	-	25	ns
tolz	OutputEnableto OutputinLow-Z ${ }^{(3)}$	0	-	0	-	0	-	ns
toe	OutputEnable to Output Valid	3	6	3	8	3	12	ns
tohz	OutputEnable to Outputin High-Z ${ }^{(3)}$	3	6	3	8	3	12	ns
twFF	Write Clock to Full Flag	-	6.5	-	10	-	15	ns
tREF	Read Clock to Empty Flag	-	6.5	-	10	-	15	ns
tPAF	Clock to Asynchronous Programmable Almost-Full Flag	-	17	-	24	-	26	ns
tPAE	Clock to Programmable Almost-Empty Flag	-	17	-	24	-	26	ns
thF	Clock to Half-Full Flag	-	17	-	24	-	26	ns
to	Clock to Expansion Out	-	6.5	-	10	-	15	ns
tx	Expansion In Pulse Width	3	-	6.5	-	10	-	ns
txis	Expansion In Set-Up Time	3.5	-	5	-	10	-	ns
tskew1	Skew time between Read Clock \& Write Clock forFull Flag	5	-	6	-	10	-	ns
tskew2 ${ }^{(2)}$	Skew time between Read Clock \& Write Clock for Empty Flag	5	-	6	-	10	-	ns

NOTES:

1. Industrial temperature range product for the 15 ns and the 25 ns speed grades are available as a standard device. All other speed grades are available by special order.
2. Pulse widths less than minimum values are not allowed.
3. Values guaranteed by design, not currently tested.

AC TEST CONDITIONS

InputPulse Levels InputRise/Fall Times Input Timing ReferenceLevels OutputReferenceLevels
OutputLoad

GND to 3.0V
3ns
1.5 V
1.5 V

See Figure 1
D.U.T.

2766 drw 04
Figure 1. Output Load

* Includes jig and scope capacitances.

SIGNAL DESCRIPTIONS: INPUTS:
 DATA IN (D0 - D17)
 Data inputs for 18-bitwide data.

CONTROLS:

RESET ($\overline{\mathrm{RS}}$)

Resetis accomplishedwhenevertheReset $(\overline{\mathrm{RS}})$ inputistakentoaLOW state. During reset, both internal read and write pointers are set to the first location. A reset is required after power-up before a write operation can take place. The Full Flag ($\overline{\mathrm{FF}}$), Half-Full Flag ($\overline{\mathrm{HF}}$) and Programmable Almost-Full Flag ($\overline{\mathrm{PAF}}$) will be reset to HIGH after tRSF. The Empty Flag ($\overline{\mathrm{EF}}$) and Programmable Almost-Empty Flag $(\overline{\mathrm{PAE}})$ will be resettoLOW aftertRSF. During reset, the output registeris initialized toallzeros and theoffsetregisters areinitialized totheirdefault values.

WRITE CLOCK (WCLK)

A write cycle is initiated on the LOW-to-HIGH transition of the Write Clock (WCLK).Datasetupandholdtimes mustbemetwithrespectotheLOW-to-HIGH transition ofWCLK.

The Write and Read Clocks can be asynchronous or coincident.

WRITE ENABLE ($\overline{\text { WEN }}$)

When the $\overline{W E N}$ input is LOW and $\overline{\mathrm{LD}}$ input is HIGH, data may beloaded into the FIFO RAM array on the rising edge of every WCLK cycle if the device is notfull. Data is stored in the RAM array sequentially and independently of any ongoing read operation.

When WEN is HIGH, no new data is written in the RAM array on eachWCLK cycle.

To prevent data overflow, $\overline{\mathrm{FF}}$ will goLOW, inhibiting further write operations. Upon the completion of a valid read cycle, $\overline{\mathrm{FF}}$ will go HIGH allowing a write to occur. The $\overline{\mathrm{FF}}$ flag is updated on the rising edge of WCLK. $\overline{\mathrm{WEN}}$ is ignored when the FIFO is full.

READ CLOCK (RCLK)

Data canbe read on the outputs on the LOW-to-HIGHtransition oftheRead Clock (RCLK), when Output Enable $(\overline{\mathrm{OE}})$ is set LOW.

The Write and Read Clocks can be asynchronous or coincident.

READ ENABLE ($\overline{\text { REN }}$)

When Read Enable is LOW and $\overline{\mathrm{LD}}$ input is HIGH, data is loaded from the RAM array into the output register on the rising edge of every RCLK cycle if the device is notempty.

When the $\overline{R E N}$ inputis HIGH, the outputregisterholds the previous dataand no new datais loaded intotheoutputregister. The dataoutputsQo-Qn maintain the previous data value.

Every word accessed at Qn, including the first word written to an empty FIFO, must be requested using $\overline{R E N}$. When the lastword has been read from the FIFO, the Empty Flag ($\overline{\mathrm{EF}}$) will go LOW, inhibiting further read operations. $\overline{\mathrm{REN}}$ is ignored when the FIFO is empty. Once a write is performed, $\overline{\mathrm{EF}}$ will go HIGH allowing a read to occur. The $\overline{\mathrm{EF}}$ flag is updated on the rising edge of RCLK.

OUTPUTENABLE ($\overline{\mathrm{OE}})$

When Output Enable ($\overline{\mathrm{OE}}$) is enabled (LOW), the parallel output buffers receive data from theoutputregister. When $\overline{\text { OE is is disabled (HIGH), the Qoutput }}$ data bus is in a high-impedance state.

LOAD ($\overline{\mathrm{LD}}$)

The IDT72205LB/72215LB/72225LB/72235LB/72245LB devices contain two 12-bit offset registers with data on the inputs, or read on the outputs. When the Load ($\overline{\mathrm{LD}}$) pin is set LOW and $\overline{W E N}$ is set LOW, data on the inputs D0-D11 is written into the Empty Offset register on the first LOW-to-HIGH transition of the Write Clock (WCLK). When the $\overline{\mathrm{LD}}$ pin and ($\overline{\mathrm{WEN}}$) are held LOW then datais written intothe Full Offsetregisteronthe secondLOW-to-HIGH transition of (WCLK). The third transition ofthe write clock (WCLK)again writes to the Empty Offsetregister.

However, writing all offset registers does nothaveto occuratone time. One or two offset registers can be written and then by bringing the $\overline{\mathrm{LD}}$ pin HIGH , the FIFO is returned to normal read/write operation. When the $\overline{L D}$ pin is setLOW, and $\overline{W E N}$ is LOW, the next offset register in sequence is written.

$\overline{\mathrm{LD}}$	$\overline{\text { WEN }}$	WCLK	Selection
0	0	\boxed{a}	Writingto offsetregisters: Empty Offset Full Offset
0	1	No Operation	
1	0	Write Into FIFO	
1	1	\boxed{a}	No Operation

NOTE:

1. The same selection sequence applies to reading from the registers. $\overline{\operatorname{REN}}$ is enabled and read is performed on the LOW-to-HIGH transition of RCLK.

Figure 2. Write Offset Register

2766 drw 05
NOTE:

1. Any bits of the offset register not being programmed should be set to zero.

Figure 3. Offset Register Location and Default Values

When the $\overline{L D}$ pin is LOW and $\overline{\text { WEN }}$ is HIGH, the WCLK input is disabled; then asignal at this input can neither increment the write offsetregister pointer, nor execute a write.

The contents ofthe offsetregisters can be read on the output lines whenthe $\overline{L D}$ pin is set LOW and REN is setLOW; then, data can be read on the LOW-to-HIGH transition of the read clock (RCLK). The act of reading the control registers employs a dedicated read offsetregister pointer. (The read and write pointers operate independently).

A read and a write should not be performed simultaneously to the offset registers.

FIRST LOAD (FL)

FLisgroundedtoindicate operationintheSingle DeviceorWidth Expansion mode. Inthe Depth Expansion configuration, $\overline{\text { FLis is grounded toindicateitis the }}$ first device loaded and is setto HIGH for all other devices in the Daisy Chain. (See Operating Configurations forfurtherdetails.)

WRITE EXPANSION INPUT ($\overline{\mathrm{WXI}})$

This is adual purpose pin. WXII g groundedtoindicateoperation in the Single Device or Width Expansion mode. WXI is connected to Write Expansion Out ($\overline{\mathrm{WXO}) \text { of the previous device in the Daisy Chain Depth Expansion mode. }}$

READ EXPANSION INPUT ($\overline{\mathrm{RXI}})$

This is adual purposepin. $\overline{\text { RXI is groundedtoindicate operation in the Single }}$ Device or Width Expansion mode. RXI is connected to Read Expansion Out (RXO) of the previous device in the Daisy Chain Depth Expansion mode.

OUTPUTS:

FULL FLAG(FF)

When the FIFO is full, $\overline{F F}$ will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is notfull. Ifno reads are performed after a reset, FF will go LOW after D writes to the FIFO. $D=256$ writes for the IDT72205LB, 512 forthe IDT72215LB, 1,024 forthe IDT72225LB, 2,048forthe IDT72235LB and 4,096 for the IDT72245LB.

The FF is supdated onthe LOW-to-HIGH transition ofthe write clock(WCLK).

EMPTY FLAG/(EF)

When the FIFO is empty, $\overline{\text { EF }}$ will go LOW, inhibiting further read operations. When EF is HIGH, the FIFO is notempty.

The EF is updated ontheLOW-to-HIGH transition of the read clock(RCLK).

PROGRAMMABLEALMOST-FULL FLAG (PAF)

The Programmable Almost-Full Flag (PAF) will go LOW when FIFO reaches the Almost-Full condition. Ifno reads are performed after Reset $(\overline{\mathrm{RS}})$, the $\overline{\text { PAF }}$ will go LOW after ($256-\mathrm{m}$) writes for the IDT72205LB, (512 -m) writes for the IDT72215LB, ($1,024-m$) writes for the IDT72225LB, ($2,048-\mathrm{m}$) writes for the IDT72235LB and (4,096-m) writes for the IDT72245LB. The offset " m " is defined inthe FULL offsetregister.

Ifthere is no Full offsetspecified, the $\overline{\mathrm{PAF}}$ will be LOW when the device is 31 away from completely full for IDT72205LB, 63 away from completely full for IDT72215LB, and 127 away from completely full for IDT72225LB/72235LB/ 72245LB.

The $\overline{\text { PAF is asserted LOW on the LOW-to-HIGH transition ofthe write clock }}$ (WCLK). $\overline{\text { PAF }}$ is resetto HIGH on the LOW-to-HIGHtransition ofthe read clock (RCLK). Thus $\overline{\text { PAF }}$ is asynchronous.

PROGRAMMABLEALMOST-EMPTYFLAG (ㅍAE)

The ProgrammableAlmost-Empty Flag(PAE) will go LOW when the read pointer is " $n+1$ "locations less than the write pointer. The offset" n " is defined in the EMPTY offsetregister.

Ifthere is no Empty offsetspecified, the Programmable Almost-Empty Flag ($\overline{\mathrm{PAE}}$) will be LOW when the device is 31 away from completely empty for IDT72205LB, 63 away from completely empty for IDT72215LB, and 127 away from completely empty for IDT72225LB/72235LB/72245LB.

The PAE is asserted LOW on the LOW-to-HIGH transition of the read clock (RCLK). $\overline{\text { PAE is resetto HIGH on the LOW-to-HIGH transition of the write clock }}$ (WCLK). Thus $\overline{\text { PAE }}$ is asynchronous.

WRITE EXPANSION OUT/HALF-FULL FLAG ($\overline{\mathrm{WXO}} / \overline{\mathrm{HF}})$

This is a dual-purpose output. In the Single Device and Width Expansion mode, when Write Expansion In ($\overline{\mathrm{WXI}})$ and Read Expansion In $(\overline{\mathrm{RXI}})$ are grounded, this outputacts as an indication of a half-full memory.

TABLE 1 - STATUS FLAGS

Number of Words in FIFO					$\overline{\text { FF }}$	$\overline{\text { PAF }}$	$\overline{\mathrm{HF}}$	$\overline{\text { PAE }}$	$\overline{\text { EF }}$
IDT72205LB	IDT72215LB	IDT72225LB	IDT72235LB	IDT72245LB					
0	0	0	0	0	H	H	H	L	L
1 to $\mathrm{n}^{(1)}$	H	H	H	L	H				
$(\mathrm{n}+1)$ to 128	$(\mathrm{n}+1)$ to 256	$(\mathrm{n}+1)$ to 512	$(\mathrm{n}+1)$ to 1,024	$(\mathrm{n}+1)$ to 2,048	H	H	H	H	H
129 to (256-(m+1))	257 to (512-(m+1))	513 to (1,024-(m+1))	1,025 to (2,048-(m+1))	2,049 to (4,096-(m+1))	H	H	L	H	H
(256-m) ${ }^{(2)}$ to 255	$(512-m)^{(2)}$ to 511	$(1,024-m)^{(2)}$ to 1,023	$(2,048-m)^{(2)}$ to 2,047	$(4,096-m)^{(2)}$ to 4,095	H	L	L	H	H
256	512	1,024	2,048	4,096	L	L	L	H	H

NOTES:

1. $\mathrm{n}=$ Empty Offset (Default Values : IDT72205LB $\mathrm{n}=31$, IDT72215LB $\mathrm{n}=63$, IDT72225LB/72235LB/72245LB $\mathrm{n}=127$)
2. $m=$ Full Offset (Default Values : IDT72205LB $m=31$, IDT72215LB $m=63$, IDT72225LB/72235LB/72245LB $m=127$)

Afterhalfofthememory is filled, and attheLOW-to-HIGH transition ofthenext write cycle, the Half-Full Flag goes LOW and will remain setuntil the difference between the write pointer and read pointer is less than or equal to one half of the total memory of the device. The Half-Full Flag ($\overline{\mathrm{HF}})$ is then reset to HIGH by the LOW-to-HIGH transition of the Read Clock (RCLK). The $\overline{\mathrm{HF}}$ is asynchronous.

In the Daisy Chain Depth Expansion mode, $\overline{\mathrm{WXI}}$ is connected to $\overline{\mathrm{WXO}}$ of the previous device. This outputacts as a signal to the next device in the Daisy Chain by providing a pulse when the previous device writes to the lastlocation ofmemory.

READ EXPANSION OUT ($\overline{\mathrm{RXO}})$

In the Daisy Chain Depth Expansion configuration, Read Expansion In $(\overline{\mathrm{RXI}})$ is connected to Read Expansion Out $(\overline{\mathrm{RXO}})$ of the previous device. This outputacts as a signal tothe nextdevice in the Daisy Chain by providing a pulse when the previous device reads from the last location of memory.

DATAOUTPUTS(Q0-Q17)

Q0-Q17 are data outputs for 18-bit wide data.

NOTES:

1. After reset, the outputs will be LOW if $\overline{\mathrm{OE}}=0$ and tri-state if $\overline{\mathrm{OE}}=1$.
2. The clocks (RCLK, WCLK) can be free-running during reset.

Figure 4. Reset Timing ${ }^{(2)}$

NOTE:

1. tskew1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then $\overline{F F}$ may not change state until the next WCLK edge.

Figure 5. Write Cycle Timing

NOTE:

1. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that $\overline{E F}$ will go HIGH during the current clock cycle. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then $\overline{E F}$ may not change state until the next RCLK edge.

Figure 6. Read Cycle Timing

NOTES:

1. When tSKEW2 minimum specification, tFRL (maximum) $=$ tCLK + tSKEW2. When tSKEW2 $<$ minimum specification, tFRL (maximum) $=$ either 2^{*} tCLK + tSKEW2 or tCLK + tSKEW2. The Latency Timing applies only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).
2. The first word is available the cycle after $\overline{\mathrm{EF}}$ goes HIGH, always.

Figure 7. First Data Word Latency after Reset with Simultaneous Read and Write

NOTE:

1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that $\overline{\mathrm{FF}}$ will go HIGH during the current clock cycle. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tsKEW1, then $\overline{F F}$ may not change state until the next WCLK edge.

Figure 8. Full Flag Timing

NOTE:

1. When tSKEW2 minimum specification, tFRL (maximum) $=$ tCLK + tSKEW2. When tSKEW2 $<$ minimum specification, tFRL (maximum) $=$ either 2^{*} tCLK +tSKEW 2 or tCLK +tSKEW 2 . The Latency Timing applies only at the Empty Boundary ($\overline{\mathrm{EF}}=\mathrm{LOW}$).

Figure 9. Empty Flag Timing

Figure 10. Write Programmable Registers

Figure 11. Read Programmable Registers

1. $n=$ PAE offset. Number of data words written into FIFO already $=n$.

Figure 12. Programmable Almost-Empty Flag Timing

NOTES:
2766 drw 15

1. $m=\overline{\text { PAF }}$ offset. $D=$ maximum FIFO Depth. Number of data words written into FIFO memory $=256-m+1$ for the IDT72205LB, $512-m+1$ for the IDT72215LB, $1,024-m+1$ for the IDT72225LB, 2,048-($m+1$) for the IDT72235LB and 4,096-(m+1) for the IDT72245LB.
2. $256-\mathrm{m}$ words for the IDT72205LB, $512-\mathrm{m}$ words for the IDT72215LB, 1,024-m words for the IDT72225LB, 2,048-m words for the IDT72235LB and 4,096-m words for the IDT72245LB.

Figure 13. Programmable Almost-Full Flag Timing

1. $D=$ maximum FIFO Depth $=256$ words for the IDT72205LB, 512 words for the IDT72215LB, 1,024 words for the IDT72225LB, 2,048 words for the IDT72235LB and 4,096 words for the IDT72245LB.

Figure 14. Half-Full Flag Timing

NOTE:

1. Write to Last Physical Location.

Figure 15. Write Expansion Out Timing

NOTE:

1. Read from Last Physical Location.

Figure 16. Read Expansion Out Timing

Figure 17. Write Expansion In Timing

Figure 18. Read Expansion In Timing

OPERATING CONFIGURATIONS

SINGLE DEVICE CONFIGURATION

Asingle IDT72205LB/72215LB/72225LB/72235LB/72245LB may beused when the application requirements are for $256 / 512 / 1,024 / 2,048 / 4,096$ words
orless. These FIFOs are in a single Device Configuration whenthe FirstLoad ($\overline{\mathrm{FL}})$, Write Expansion $\ln (\overline{\mathrm{WXI}})$ and Read Expansion $\ln (\overline{\mathrm{RXI}})$ control inputs are grounded (Figure 19).

Figure 19. Block Diagram of Single $256 \times 18,512 \times 18,1,024 \times 18,2,048 \times 18,4,096 \times 18$ Synchronous FIFO

WIDTH EXPANSION CONFIGURATION

Word width may be increased simply by connecting together the control signals of multiple devices. Statusflags can be detected from any one device. Theexceptions are the Empty Flag and Full Flag. Because of variationsinskew between RCLK and WCLK, it is possible for flag assertion and deassertion to vary by one cycle between FIFOs. To avoid problems the user must create
composite flags by ANDing the Empty Flags of every FIFO, and separately ANDing all Full Flags. Figure 20 demonstrates a 36-word width by using two IDT72205LB/72215LB/72225LB/72235LB/72245LBs. Any word width can be attained by adding additional IDT72205LB/72215LB/72225LB/72235LB/ 72245 LBs. Please see the Application Note AN-83.

NOTE:

1. Do not connect any output control signals directly together.

Figure 20. Block Diagram of $256 \times 36,512 \times 36,1,024 \times 36,2,048 \times 36,4,096 \times 36$ Synchronous FIFO Memory Used in a Width Expansion Configuration

DEPTH EXPANSION CONFIGURATION (WITH PROGRAMMABLE FLAGS)

These devices can easily be adapted to applications requiring morethan 256/ 512/1,024/2,048/4,096 words ofbuffering. Figure 21 showsDepth Expansion usingthree IDT72205LB/72215LB/72225LB/72235LB/72245LBs. Maximum depth is limited only by signal loading. Follow these steps:

1. The first device must be designated by grounding the First Load ($\overline{\mathrm{FL}})$ control input.
2. All other devices must have $\overline{F L}$ in the HIGH state.
3. The Write Expansion Out $(\overline{\mathrm{WXO}})$ pin of each device must be tied to the Write Expansion $\operatorname{In}(\overline{\mathrm{WXI}})$ pin of the next device. See Figure 21.
4. The Read Expansion Out $(\overline{\mathrm{RXO}})$ pin of each device must be tied to the Read Expansion In ($\overline{\mathrm{RXI}})$ pin of the next device. See Figure 21.
5. All Load ($\overline{\mathrm{LD}})$ pins are tied together.
6. The Half-Full Flag ($\overline{\mathrm{HF}}$) is not available in this Depth Expansion Configuration.
7. $\overline{\mathrm{EF}}, \overline{\mathrm{FF}}, \overline{\mathrm{PAE}}$, and $\overline{\mathrm{PAF}}$ are created with composite flags by ORing together every respective flags for monitoring. The composite $\overline{\text { PAE }}$ and $\overline{\mathrm{PAF}}$ flags are not precise.

Figure 21. Block Diagram of $768 \times 18,1,536 \times 18,3,072 \times 18,6,144 \times 18,12,288 \times 18$ Synchronous FIFO Memory With Programmable Flags used in Depth Expansion Configuration

ORDERING INFORMATION

NOTES:

1. Industrial temperature range product for 15 ns and 25 ns speed grades are available as a standard device. All other speed grades are available by special order
2. Green parts are available. For specific speeds and packages contact your sales office.

DATASHEET DOCUMENT HISTORY

10/02/2006
10/22/2008
pgs. 1 and 16.
03/21/2013
pg. 16.
pg. 1, 12, 16

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IDT (Integrated Device Technology):
72245LB10PF8 72245LB10TF8 72235LB10TF8 72225LB10PF8 72215LB10TF8 72205LB10PF8 72215LB10PF8
72205LB10TF8 72225LB10TF8 72235LB10PF8 72245LB10JG8 72215LB15PFG18 72225LB10TFG8
72235LB10PFG8 72225LB25PFI8 72215LB25JI 72235LB25JI 72225LB25TF 72205LB25PF 72215LB25TF 72245LB25PF 72235LB25TF 72225LB25JI 72235LB25PF 72215LB25PF 72205LB25TF 72245LB25TF 72245LB25JI 72225LB25PF 72215LB10PFG 72235LB10TFG 72245LB10PFG 72225LB10PFG 72205LB10PFG 72235LB10PFG 72225LB10TFG 72245LB10PFG8 72205LB25PF8 72235LB15TFGI 72225LB15PFGI 72245LB25TFI8 72215LB15TFI 72205LB15PFI 72225LB25TF8 72235LB25PF8 72245LB15PFI 72245LB25TF8 72225LB15PFI 72205LB25TF8 72215LB25PF8 72235LB15JI8 72245LB15JI8 72225LB15PF8 72235LB15TF8 72245LB15TF8 72215LB15TF8 72205LB15PF8 72245LB15PF8 72205LB10PFG8 72215LB25TF8 72215LB15PF18 72205LB15TFI8 72235LB25PFI8 72225LB25TFI8 72245LB15TFI8 72215LB25JI8 72245LB15JGI 72235LB25JI8 72245LB15TFI 72215LB15PFI 72205LB15TFI 72245LB25PF8 72235LB25TF8 72225LB25PF8 72235LB15PFI 72225LB15TFI 72225LB25JI8 72245LB25JI8 72205LB25TFI8 72215LB25PFI8 72225LB15TFI8 72235LB15PFI8 72215LB15TF 72205LB15PF 72245LB15PF 72225LB15TF 72235LB15PF 72245LB15TF 72205LB15TF 72235LB15JI 72245LB15JI 72215LB15PF 72235LB15TF 72225LB15PF 72225LB15TFGI8 72235LB15PFGI8 72245LB15PFI8 72225LB15PFGI8 72235LB15TFG18 72235LB10PF

