Precision 1:15 LVDS Fanout Buffer with 2:1 MUX and Four $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks

General Description

The SY89218U is a 2.5 V precision, high-speed, integrated clock divider and LVDS fanout buffer capable of handling clocks up to 1.5 GHz . Optimized for communications applications, the four independently controlled output banks are phase-matched and can be configured for pass through $(\div 1), \div 2$ or $\div 4$ divider ratios.

The differential input includes Micrel's unique, 3-pin input termination architecture that allows the user to interface to any differential signal (AC- or DC-coupled) as small as $100 \mathrm{mV}(200 \mathrm{mV}$ PP $)$ without any level shifting or termination resistor networks in the signal path. The low-skew, low-jitter outputs are LVDS compatible with extremely fast rise/fall times guaranteed to be less than 200ps.
The /MR (master reset) input asynchronously resets the outputs. A four-clock delay after de-asserting /MR allows the counters to synchronize and start the outputs from the same state without any runt pulse.
The SY89218U is part of Micrel's Precision Edge ${ }^{\circledR}$ product family. All support documentation can be found at Micrel's web site at: www.micrel.com.

Features

- Low-skew LVDS output banks with independently programmable $\div 1, \div 2$ and $\div 4$ divider options
- Four output banks, 15 total outputs
- Guaranteed AC performance over temperature and voltage:
- Accepts a clock frequency up to 1.5 GHz
- <1600ps IN-to-OUT propagation delay
- <200ps rise/fall time
- <35ps within bank skew
- Fail Safe Input
- Prevents outputs from oscillating
- Ultra-low jitter design:
- $<1 \mathrm{ps}_{\mathrm{RMS}}$ random jitter
- <10pspp total jitter (clock)
- Patent-pending input termination and VT pin accepts DC- and AC-coupled inputs (CML, PECL, LVDS)
- LVDS-compatible outputs
- CMOS/TTL-compatible output enable (EN) and divider select control
- $2.5 \mathrm{~V} \pm 5 \%$ power supply
- $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range
- Available in 64-pin TQFP

Applications

- All SONET/SDH applications
- All Fibre Channel applications
- All Gigabit Ethernet applications

Markets

- LAN/WAN routers/switches
- Storage
- ATE
- Test and measurement

Functional Block Diagram

Ordering Information ${ }^{(1)}$

Part Number	Package Type	Operating Range	Package Marking	Lead Finish
SY89218UHY	T64-1	Industrial	SY89218UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn
SY89218UHYTR ${ }^{(2)}$	T64-1	Industrial	SY89218UHY with Pb-Free bar-line indicator	Pb-Free Matte-Sn

Notes:

1. Contact factory for die availability. Dice are guaranteed at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{DC}$ Electricals only.
2. Tape and Reel.

Pin Configuration

Pin Description

Pin Number	Pin Name	Pin Function	
$\begin{gathered} 1,2 \\ 3,4 \\ 15,16 \\ 17,18 \end{gathered}$	FSELA1, FSELA0 FSELB1, FSELB0 FSELC1, FSELC0 FSELD1, FSELD0	Single-Ended Inputs: These TTL/CMOS inputs select the divide ratio for each of the four banks of outputs. Note that each of these inputs is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to a logic HIGH state if left open. The input-switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$.	
$\begin{gathered} 5,8, \\ 11,14 \end{gathered}$	$\begin{aligned} & \text { INO, /INO } \\ & \text { IN1, /IN1 } \end{aligned}$	Differential Inputs: These input pairs are the differential signal inputs to the device. These inputs accept AC- or DC-coupled signals as small as 100 mV . The input pairs internally terminate to a VT pin through 50Ω. Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.	
6, 12	VT0, VT1	Input Termination Center-Tap: Each side of a differential input pair terminates to a VT pin. The VT pin provides a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.	
$\begin{aligned} & \hline 7, \\ & 13 \end{aligned}$	VREF-AC0, VREF-AC1	Reference Voltage: These outputs bias to $\mathrm{V}_{\mathrm{cc}}-1.2 \mathrm{~V}$. They are used for AC-coupling inputs IN and /IN. Connect VREF-AC directly to the corresponding VT pin. Bypass with $0.01 \mu \mathrm{~F}$ low ESR capacitor to VCC. Due to limited drive capability, the VREF-AC pin is only intended to drive its respective VT pin. Maximum sink/source current is $\pm 1.5 \mathrm{~mA}$. Please refer to the "Input Interface Applications" section for more details.	
9	/MR	Single-Ended Input: This TTL/CMOS-compatible master reset function asynchronously sets the true outputs LOW, complimentary outputs HIGH, and holds them in that state as long as /MR remains LOW. This input is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open. The input-switching threshold is $\mathrm{V}_{\mathrm{C}} / 2$.	
10	CLK_SEL	Single-Ended Input: This single-ended TTL/CMOS-compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open. The input-switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$.	
$\begin{gathered} 20,25,30,33 \\ 40 \\ 41,48,50,55, \\ 62 \end{gathered}$	VCC	Positive Power Supply. Bypass with a $0.1 \mu \mathrm{~F} \\| 0.01 \mu \mathrm{~F}$ low ESR capacitor as close to $V_{\text {cc }}$ pin as possible.	
$\begin{aligned} & 21,22 \\ & 23,24 \\ & 26,27 \\ & 28,29 \end{aligned}$	$\begin{aligned} & \text { IQC0, QC0 } \\ & \text { IQC1, QC1 } \\ & \text { IQC2, QC2 } \\ & \text { IQC3, QC3 } \end{aligned}$	Bank C LVDS differential output pairs controlled by FSELC1 and FSELC0. Refer to "Function Table" for details. Unused output pairs should be terminated with 100Ω across the differential pair	
31	NC	No connect.	
$\begin{aligned} & 34,35, \\ & 36,37 \\ & 38,39 \\ & 42,43 \\ & 44,45, \\ & 46,47 \end{aligned}$	/QD0, QD0 /QD1, QD1 /QD2, QD2 /QD3, QD3 /QD4, QD4 /QD5, QD5	Bank D LVDS differential output pairs controlled by FSELD1 and FSELD0. Refer to "Function Table" for details. Unused output pairs should be terminated with 100Ω across the differential pair	
$\begin{aligned} & 51,52 \\ & 53,54 \end{aligned}$	$\begin{aligned} & \text { IQA0, QA0 } \\ & \text { IQA1, QA1 } \end{aligned}$	Bank A LVDS differential output pairs controlled by FSELA1 and FSELA0. Refer to "Function Table" for details. Unused output pairs should be terminated with 100Ω across the differential pair	
$\begin{aligned} & 56,57 \\ & 58,59 \\ & 60,61 \end{aligned}$	$\begin{aligned} & \text { /QB0, QB0 } \\ & \text { IQB1, QB1 } \\ & \text { IQB2, QB2 } \end{aligned}$	Bank B LVDS differential output pairs controlled by FSELB1 and FSELB0. Refer to "Function Table" for details. Unused output pairs should be terminated with 100Ω across the differential pair	

Pin Description (continued)

Pin Number	Pin Name	Pin Function
64	EN	Single-Ended Input: This TTL/CMOS input disables and enables the outputs. It is internally connected to a $25 \mathrm{k} \Omega$ pull-up resistor and will default to logic HIGH state if left open. When disabled, true outputs go LOW and complementary outputs switch to HIGH. The input switching threshold is $V_{c c} / 2$. For the input enable and disable functional description, refer to Figures 2d and 2 e.
$19,32,49,63$	GND, Exposed Pad	Ground and exposed pad must be connected to the same GND plane on the board.

Function Table

/MR ${ }^{(1)}$	$E N^{(2,3)}$	CLK_SEL	FSELx0 ${ }^{(4)}$	FSELx ${ }^{(4)}$	Q
1	1	0	0	0	INO -1
1	1	1	0	0	$\mathrm{IN} 1 \div 1$
1	1	0	1	0	INO -2
1	1	1	1	0	IN1 -2
1	1	0	X	1	INO -4
1	1	1	X	1	IN1 -4
1	0	X	X	X	0
0	X	X	X	X	0

Notes:

1. /MR asynchronously forces Q to LOW (/Q to HIGH).
2. EN forces Q LOW between 2 and 6 input clock cycles after the falling edge of EN . Refer to "Timing Diagram" section.
3. EN synchronously enables Q between two and six input clock cycles after the rising edge of EN . Refer to "Timing Diagram" section.
4. FSEL valid for each of the banks A, B, C, and D. Banks can be programmed independent of each other.

Absolute Maximum Ratings ${ }^{(\mathbf{1)}}$

Supply Voltage (V_{cc}) -0.5 V to +4.0 V
Input Voltage ($\mathrm{V}_{\text {IN }}$). . 0.5 V to V_{cc}
Termination Current
Source or sink current on $\mathrm{V}_{\mathrm{T}} . \pm 100 \mathrm{~mA}$
Input Current
Source or sink current on IN, IIN $\pm 50 \mathrm{~mA}$
$\mathrm{V}_{\text {Ref-AC }}$ Current ${ }^{(3)}$
Source or sink current on $\mathrm{V}_{\text {REF-AC }}$.................... $\pm 2 \mathrm{~mA}$
Lead Temperature (soldering, 20sec.)................ $260^{\circ} \mathrm{C}$
Storage Temperature $\left(\mathrm{T}_{\mathrm{s}}\right) \ldots \ldots \ldots5^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Ratings ${ }^{(2)}$

Supply Voltage (V_{IN}).................... +2.375 V to +2.625 V
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$.................. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Package Thermal Resistance ${ }^{(4)}$ TQFP
Still-air $\left(\theta_{\mathrm{JA}}\right)$.. $35^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-board $\left(\psi_{\mathrm{JB}}\right)$................. $20^{\circ} \mathrm{C} / \mathrm{W}$

$$
0
$$

$$
.20^{\circ} \mathrm{C} / \mathrm{W}
$$

DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units	
$V_{\text {cc }}$	Positive Supply Voltage Range		2.375		2.625	V	
Icc	Power Supply Current			325	420	mA	
$\mathrm{R}_{\text {DIFF_IN }}$	Differential Input Resistance (IN-to-IIN)		90	100	110	Ω	
$\mathrm{R}_{\text {IN }}$	Input Resistance $\text { (IN-to- } \mathrm{V}_{\mathrm{T}}, \text { /IN-to- } \mathrm{V}_{\mathrm{T}} \text {) }$		45	50	55	Ω	
V_{IH}	Input HIGH Voltage (IN, /IN)		1.2		$\mathrm{V}_{\text {cc }}$	V	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (IN, /IN)		0		$\mathrm{V}_{\mathrm{HH}-0.1}$	V	
$\mathrm{V}_{\text {IN }}$	Input Voltage Swing (IN, /IN)	See Figure 1a, Note 6	0.1		2.5	V	
VIIFF_IN	Differential Input Voltage Swing \|IN - /IN		See Figure 1b	0.2			V
$\mathrm{V}_{\text {IN_FSI }}$	Input Voltage Threshold that Triggers FSI			30	100	mV	
$\mathrm{V}_{\text {REF-AC }}$	Reference Voltage		$\mathrm{V}_{\mathrm{cc}}-1.3$	$\mathrm{V}_{\mathrm{cc}}-1.2$	$\mathrm{V}_{\mathrm{cc}}-1.1$	V	
$\mathrm{V}_{\text {T_IN }}$	Voltage from Input to V_{T}				1.28	V	

LVTTLICMOS DC Electrical Characteristics ${ }^{(5)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2			V
$\mathrm{~V}_{\text {IL }}$	Input LOW Voltage				0.8	V
$\mathrm{I}_{\text {IH }}$	Input HIGH Current		-125		30	$\mu \mathrm{~A}$
I_{IL}	Input LOW Current		-300			$\mu \mathrm{~A}$

Notes:

1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.
2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
3. Due to the limited drive capability use for input of the same package only.
4. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in still-air number, unless otherwise stated.
5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
6. $V_{\mathbb{I N}}(\max)$ is specified when V_{T} is floating.

LVDS Outputs DC Electrical Characteristics ${ }^{(7)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across the outputs; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$V_{\text {OUT }}$	Output Voltage Swing (Q, /Q)	See Figure 1a	250	325		mV
V $_{\text {DIFF_out }}$	Differential Output Voltage Swing IQ -/Q\|	See Figure 1b	500	650		mV
VOCM	Output Common Mode Voltage (Q, /Q)	See Figure 5b	1.125	1.20	1.275	V
Δ V $_{\text {OCM }}$	Change in Common Mode Voltage $(\mathrm{Q}, / \mathrm{Q})$	See Figure 5b	-50		+50	mV

Notes:

7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

AC Electrical Characteristics ${ }^{(8)}$

$\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 5 \%, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across the outputs; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.

Symbol	Parameter	Condition	Min	Typ	Max	Units
$\mathrm{f}_{\text {MAX }}$	Maximum Operating Frequency	$V_{\text {Out }} \geq 200 \mathrm{mV}$	1.5	2		GHz
$\mathrm{t}_{\text {PD }}$	Differential Propagation Delay	IN-to-Q	800	1250	1600	ps
		CLK_SEL-to-Q	700	1000	1400	ps
		/MR(H-L)-to-Q	700	1000	1400	ps
t_{RR}	Reset Recovery Time	/MR (L-H)-to-IN	300			ps
$t_{\text {PD }}$ Tempco	Differential Propagation Delay Temperature Coefficient			225		fs ${ }^{\circ} \mathrm{C}$
tskew	Within-Bank Skew	Within same fanout bank ${ }^{(9.10)}$			35	ps
	Bank-to-Bank Skew	Same divide setting ${ }^{(11)}$			40	ps
	Bank-to-Bank Skew	Different divide setting ${ }^{(11)}$			60	ps
	Part-to-Part Skew	Note 12			400	ps
$\mathrm{t}_{\text {IItter }}$	Random Jitter (RJ)	Note 13			1	$\mathrm{pS}_{\text {RMS }}$
	Total Jitter (TJ)	Note 14			10	pSpp
	Cycle-to-Cycle Jitter	Note 15			1	$\mathrm{pS}_{\text {RMS }}$
$\mathrm{tr}, ~_{\text {, }} \mathrm{f}$	Output Rise/Fall Time (20\% to 80\%)	At full output swing	60	120	200	ps
	Duty Cycle	Divide-by-2 or Divide-by-4	47		53	\%
		Divide-by-1, input > 1GHz	45		55	\%
		Divide-by-1, input < 1GHz	47		53	\%

Notes:

8. Measured with 100 mV input swing. Input $t_{r} / t_{f} \leq 300 \mathrm{ps}$. See "Timing Diagrams" section for definition of parameters. High-frequency ACparameters are guaranteed by design and characterization.
9. Within-bank skew is the difference in propagation delays among the outputs within the same bank.
10. Skews within banks depend on the number of outputs. Within-bank skew decreases if the bank has lesser outputs.
11. Bank-to-bank skew is the difference in propagation delays between outputs from different banks. Bank-to-bank skew is also the phase offset between each bank, after MR is applied.
12. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
13. Random jitter is measured with a K28.7 comma detect character pattern.
14. Total jitter definition: with an ideal clock input frequency $\leq f_{M A x}$, no more than one output edge in 10^{12} output edges will deviate by more than the specified peak-to-peak jitter value.
15. Cycle-to-cycle jitter definition: the variation of periods between adjacent cycles, $T_{n}-T_{n-1}$ where T is the time between rising edges of the output signal.

Functional Description

Clock Select (CLK_SEL)

CLK_SEL is an asynchronous TTL/CMOS compatible input that selects one of the two input signals. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. Delay between the clock selection and multiplexer selecting the correct input signal depends upon the divider settings. The delay varies due to the asynchronous nature of the input. Input switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$. Refer to Figure 2a.

Fail-Safe Input (FSI)

The input includes a special failsafe circuit to sense the amplitude of the input signal and to latch the outputs when there is no input signal present, or when the amplitude of the input signal drops sufficiently below $100 \mathrm{mV} \mathrm{V}_{\mathrm{PK}} \quad\left(200 \mathrm{~m} \mathrm{~V}_{\mathrm{PP}}\right)$, typically $30 \mathrm{mV} \mathrm{V}_{\mathrm{PK}}$. Maximum frequency of the SY89218U is limited by the FSI function. Refer to Figure 2b.

Input Clock Failure Case

If the input clock fails to a floating, static, or extremely low signal swing, the FSI function will eliminate a metastable condition and guarantee a stable output signal. No ringing and no undetermined state will occur at the output under these conditions.
Please note that the FSI function will not prevent duty cycle distortion in case of a slowly deteriorating (but still toggling) input signal. Due to the FSI function, the propagation delay will depend upon rise and fall time of the input signal and on its amplitude. Refer to "Typical Operating Characteristics" for detailed information.

Master Reset (IMR)

/MR is a TTL/CMOS compatible input that resets the output signals. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. A LOW input to /MR asynchronously sets the true outputs LOW and complimentary outputs HIGH. The outputs will remain in this state until /MR is forced HIGH. Input switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$. Refer to Figure 2c.

Enable Outputs (EN)

EN is a synchronous TTL/CMOS compatible input that enables/disables the outputs based on the input to this pin. Internal $25 \mathrm{k} \Omega$ pull-up resistor defaults the input to logic HIGH if left open. A logic LOW input causes the true outputs to go LOW and complementary outputs to go HIGH. It takes 2 to 6 input clock cycles before the outputs are enabled/disabled because the signals are going through a series of flip-flops. Input switching threshold is $\mathrm{V}_{\mathrm{cc}} / 2$. Refer to Figure 2d and 2 e .

Single-Ended Differential Swings

Figure 1a. Single-Ended Voltage Swing

Figure 1b. Differential Voltage Swing

Timing Diagrams

Figure 2a. Propagation Delay

Figure 2b. Fail Safe Feature

Timing Diagrams

Figure 2c. Reset with Output Enabled

Timing Diagrams

Figure 2d. Enable Timing

Figure 2e. Disable Timing

Typical Operating Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across the outputs, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Propagation Delay
vs. Input Tr/Tf

Propagation Delay
vs. Input Tr/Tf

Propagation Delay
vs. Input Tr/Tf

Functional Characteristics

$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, G N D=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=100 \Omega$ across the outputs, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated.

Input Stage Internal Termination

Figure 3. Simplified Differential Input Stage

Input Interface Applications

Figure 4a. CML Interface (DC-Coupled)

Option: May connect V_{T} to VCC

Figure 4d. LVPECL Interface (AC-Coupled)

Figure 4b. CML Interface (AC-Coupled)

Figure 4e. LVDS Interface

Figure 4c. LVPECL Interface (DC-Coupled)

LVDS Output Interface Applications

LVDS specifies a small swing of 325 mV typical, on a nominal 1.2 V common mode above ground. The common mode voltage has tight limits to permit large variations in the ground between and LVDS driver and receiver. Also, change in common mode voltage, as a function of data input, is kept to a minimum, to keep EMI low.

Figure 5a. LVDS Differential Measurement

Figure 5b. LVDS Common Mode Measurement

Related Product and Support Documentation

Part Number	Function	Data Sheet Link
SY89221U	Precision 1:15 LVPECL Fanout Buffer with 2:1 MUX and Four $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89221u.pdf
SY89200U	Ultra-Precision 1:8 LVDS Fanout with Three $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89200u.pdf
SY89202U	Ultra-Precision 1:8 LVPECL Fanout with Three $\div 1 / \div 2 / \div 4$ Clock Divider Output Banks	http://www.micrel.com/_PDF/HBW/sy89202u.pdf
HBW Solutions	New Products and Applications	http://www.micrel.com/page.do?page=/product- info/as/HBWsolutions.shtml

Package Information

64-Pin EPAD-TQFP (T64-1)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http:/www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.
© 2006 Micrel, Incorporated.

