

Designated client product

This product will be discontinued its production in the near term.

And it is provided for customers currently in use only, with a time limit.

It can not be available for your new project. Please select other new or existing products.

For more information, please contact our sales office in your region.

New Japan Radio Co.,Ltd.

www.njr.com

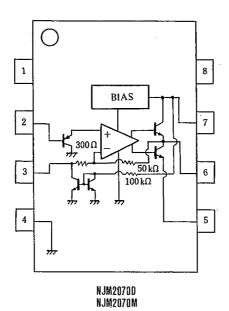
LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

NJM2070 is a power amplification monolithic IC of wide Operating voltage range. It is applied for audio power amplifier in portable radio and handy cassette player.

■ FEATURES

Operating Voltage


 $(1.8V \sim 15V)$

Low Operating Current

 $4mA typ : V^+=6V)$ DIP8, DMP8

Package Outline Bipolar Technology

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2070D

PIN FUNCTION

1. NC
2. +INPUT
3. -INPUT
4. GND
5. GND

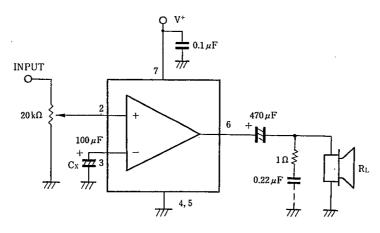
6. OUTPUT

7. V⁺ 8. NC

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

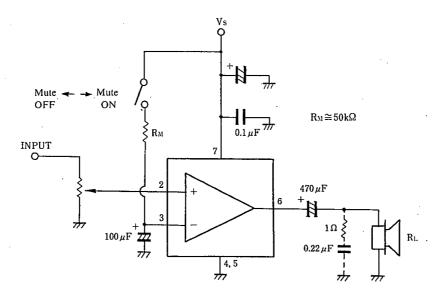
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	15		
Output Peak Current	I _{OP}	1	Α	
Power Dissipation	P _D	(DIP8) 700 (DMP8) 500(note)	mW	
Input Voltage Range	V _{IN}	± 0.4	V	
Operating Temperature Range	T _{opr}	-40~+85	°C	
Storage Temperature Range T _{stg}		-40~+125	°C	


(note) At on PC board

■ ELECTRICAL CHARACTERISTICS

(V⁺=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8		15	V
Output Voltage	V _o		<u> </u>	2.7	<u> </u>	ν
Operating Current	lcc	$R_L = \infty$	—	4	7	mA
Input Bias Current	IIB		<u> </u>	200	_	nA
Output Power		THD=10%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$	0.5	0.6	—	w
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	—	0.32	 	w
	Po	$V^{+}=3V$, $R_L=4\Omega$	_	120	l —	mW
	Po	$V^{+}=2V$, $R_L=4\Omega$	l —	30	l —	mW
		THD=1%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$		500	l —	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$		250		mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$		0.25	—	%
Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	ZIN	f=1k1-lz	100	<u> </u>	—	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_S = 10k\Omega$, A Curve		2.5		μ٧
	V _{N12}	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$		3	—	μ٧
Ripple Rejection	RR	$f = 100 \text{Hz}, C_X = 100 \mu \text{F}$	24	30	—	dB
Cut Off Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$	—	200	_	kHz
		$R=8\Omega$, $P_0=250$ mW				


■ TYPICAL APPLICATION AND TEST CIRCUIT

■ OSCILLATION PREVENTION

Put in series a 1Ω resistor and a 0.22 μ F capacitor on parallel to load, if the load is speaker. Recommend putting in parallel between pin 4 and pin 7, 0.1 μ F and more than 100 μ F capacitors with good high frequency characteristics near to the ground and supply voltage pins on parallel.

■ MUTING CIRCUIT

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.