

SAW Components

Data Sheet B3881

SAW Components	B3881
Low-Loss Filter	168 96 MHz

Data Sheet

Ceramic package QCC10B

Features

- High performance IF bandpass filter
- Multichannel W-CDMA and CDMA capable
- Hermetically sealed ceramic package
- unbalanced to unbalanced and unbalanced to balanced operation possible

Terminals

Gold plated

Dimensions in mm, approx. weight 0,23 g

Pin configuration

- 9 Input
- 10 Input ground
- 4 Output
- 5 Output ground or balanced output
- 2,7 Ground
- 1, 3, 6, 8 To be grounded

Туре	Ordering code	Marking and Package	Packing
		according to	according to
B3881	B39171-B3881-Z710	C61157-A7-A49	F61074-V8172-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	-40/ +85	°C
Storage temperature range	T_{stg}	-40/ +85	°C
DC voltage	V _{DC}	5	V
Source power	Ps	10	dBm

SAW Components					B3881
Low-Loss Filter				168,	96 MHz
Data Sheet					
Characteristics					
Operating temperature:	T = +35 +	85 °C			
Terminating source impedance:	$Z_{s}=50 \Omega sir$	nale ended	and match	ing netwo	rk
Terminating load impedance:	$Z_{\circ}=50 \Omega sir$	ale ended	and match	ina netwo	rk
	_3 00 11 0	.9.0 0.1.200			
		min.	typ.	max.	
Nominal frequency	f _N	—	168,96	_	MHz
Minimum insertion attenuation	α _{min}	_	18,5	20,5	dB
(including matching network)					
Passhand width					
$\alpha = 1 dB$	Bus		14 1	_	MHz
$\alpha_{rel} \leq 2 dB$		_	14.5	_	MHz
$\alpha_{rel} \leq 40 \text{ dB}$	- 206 В _{40d} в	_	17,1	_	MHz
	HOUD				
Amplitude ripple (p-p)	Δα				
$f_{\sf N} \pm 6,67$ M	1Hz	—	0,6	0,9	dB
Group delay ripple (p-p)	Δτ				
f _N ± 6,67 N	1Hz	—	80	120	ns
Phase Linearity ¹⁾ (rms)	Δφ				
<i>f</i> _N ± 1,92 N	1Hz		0,5	1,0	•
<i>f</i> _N - 5,0 MHz ± 1,92 M	/Hz	_	1,5	2,0	0
f _N + 5,0 MHz ± 1,92 M	MHz		0,9	1,5	۰
<i>f</i> _N + k*1,25 MHz ± 0,6144	MHz	—	0,7	1,3	0
Average Error Vector Magnitude ¹⁾	EVM				
f _N ± 1,92 N	1Hz	—	1,3	3,0	%
$f_{\sf N}$ - 5,0 MHz \pm 1,92 M	/Hz	—	3,0	4,0	%
f _N + 5,0 MHz ± 1,92 M	MHz	—	2,5	4,0	%
<i>f</i> _N + k*1,25 MHz ± 0,6144	MHz	—	1,8	4,0	%
Relative attenuation (relative to α_{min})	α_{rel}				
$f_{\rm N} \pm 7,5$ MHz $f_{\rm N} \pm 17,5$ M	MHz	2	4	_	dB
$f_{\rm N} \pm 17,5$ MHz $f_{\rm N} \pm 21,5$ M	ЛНz	41	45	_	dB
$f_{\rm N} \pm 21,5$ MHz $f_{\rm N} \pm 25,5$ M	ЛНz	43	48	_	dB
$f_{\rm N} \pm 25,5$ MHz $f_{\rm N} \pm 66,0$ M	MHz	45	50	_	dB
$f_{\rm N} \pm 66,0$ MHz $f_{\rm N} \pm 111,0$ M	MHz	40	45		dB
Temperature coefficient of frequency	TC _f	_	- 18		ppm/K

1) Phase Linearity/Average Error Vector Magnitude:where k = (-5, -4 +5)

Jun 25, 2004

3

SAW Components					B3881
Low-Loss Filter				168,	96 MHz
Data Sheet					
Characteristics					
Operating temperature:	= 0 +85	5°C			
Terminating source impedance: Z _e	=50 Ω sir	nale ended	and match	ina netwo	rk
Terminating load impedance: 7 _c	=50 Q sir	nale ended	and match	ina netwo	rk
		igio cilaca		ing notife	
		min.	typ.	max.	
Nominal frequency	f _N		168,96	—	MHz
Minimum insertion attenuation	α _{min}	_	18,5	20,5	dB
(including matching network)			- , -	- , -	-
Passband width					
$\alpha_{rel} \le 1 \text{ dB}$	B _{1dB}	_	14,1	—	MHz
$\alpha_{rel} \le 2 \text{ dB}$	B _{2dB}		14,5		MHz
$\alpha_{rel} \le 40 \text{ dB}$	B_{40dB}		17,1	—	MHz
Amplitude ripple (p-p)	Δα				
$f_{\rm N} \pm 6.67 {\rm MHz}$	100	_	0,6	0,9	dB
N = 2,22			-,-	-,-	
Group delay ripple (p-p)	$\Delta \tau$				
$f_{ m N}\pm 6,67~ m MHz$		_	80	120	ns
Phase Lipearity(1) (rms)	A (2)				
f + 1.02 MHz	Δφ		0.5	10	•
f 5 0 MHz + 1 92 MHz			1.5	2.5	•
$f_{\rm N}$ = 5,0 MHz ± 1,32 MHz $f_{\rm N}$ + 5.0 MHz ± 1.92 MHz	,		0.9	2,0 1.5	•
$f_{\rm N}$ + 6,0 MHz ± 1,02 MHz $f_{\rm N}$ + k*1 25 MHz + 0.6144 MHz	-		0.7	1,3	•
Average Error Vector Magnitude 1) EVM					
f _N ± 1,92 MHz		_	1,3	3,0	%
<i>f</i> _N - 5,0 MHz ± 1,92 MHz			3,0	4,5	%
<i>f</i> _N + 5,0 MHz ± 1,92 MHz		_	2,5	4,0	%
<i>f</i> _N + k*1,25 MHz ± 0,6144 MH	Ηz	_	1,8	4,0	%
Relative attenuation (relative to α_{min})	α_{rel}				
f _N – 7,5 MHz f _N – 17,5 MHz	-	2	4	—	dB
f _N + 7,5 MHz f _N + 17,5 MHz	:	1,5	4	—	dB
$f_{\rm N} \pm 17,5$ MHz $f_{\rm N} \pm 21,5$ MHz		41	45	—	dB
$f_{ m N} \pm 21,5$ MHz $f_{ m N} \pm 25,5$ MHz		43	48		dB
$f_{\rm N} \pm 25,5$ MHz $f_{\rm N} \pm 66,0$ MHz		45	50		dB
<i>f</i> _N ± 66,0 MHz <i>f</i> _N ± 111,0 MHz	<u>.</u>	40	45		dB
Temperature coefficient of frequency	TC _f		– 18		ppm/K

1) Phase Linearity/Average Error Vector Magnitude:where k = (-5, -4 +5)

Matching network to 50 Ohm:

(Element values depend upon PCB layout)

L _{p1} = 47 nH	L _{p4} = 220 nH
L _{s2} = 100 nH	L _{s5} = 82 nH
R _{p3} = 1,8 kΩ	

Data Sheet

Low-Loss Filter

Normalized frequency response, matching network (single ended to single ended)

Normalized frequency response (pass band), matching network

6

SAW Components Low-Loss Filter B3881 168,96 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC PD P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.