Tiny Package, High Performance, Constant Current Switching Regulator for White LED

General Description

The RT9284A/B is a compact, high efficient and high integration LED driver. Internal 22V MOSFET can support 2 to 5 White LEDs for backlighting and camera flashing.

Highly integration and internal compensation network minimizes as 5 external component counts. Optimized operation frequency can meet the requirement of small LC filters value and low operation current with high efficiency. Internal soft start function can reduce the inrush current. Tiny package type of TSOT-23-5 and TSOT-23-6 packages provide the best solution for PCB space saving and total BOM cost.

Ordering Information RT9284D(-aロ)
-Package Type
J5 : TSOT-23-5
J6 : TSOT-23-6
-Lead Plating System
P: Pb Free
G: Green (Halogen Free and Pb Free)
OVP Voltage
15: 15V
20: 20V
FB Voltage
A : 1.235V
B: 0.25V
Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

For marking information, contact our sales representative directly or through a Richtek distributor located in your area.

Features

- V_{IN} Operating Range : 2.7V to 5.5V
- Maximum Output Voltage up to 20V
- Dimming with Zero-inrush and Wide Frequency Range
- Over Voltage Protection
- Output Current up to 100 mA at $\mathrm{V}_{\text {out }}=12 \mathrm{~V}$.
- Zero Shutdown Supply Current
- Minimize the External Component
- Small LC Filter
- Internal Soft Start
- RoHS Compliant and 100\% Lead (Pb)-Free

Applications

- Camera Flash White LED
- Mobile Phone, Smart Phone LED Backlight
- PDA LED Backlight
- Digital Still Camera
- Camcorder

Pin Configurations

TOP VIEW

TSOT-23-5

TSOT-23-6

Typical Application Circuit

Figure 1. Application for Driving 3 Series WLEDs

Figure 2. Application for Driving 4 Series WLEDs

Figure 3. Application for Driving 5 Series WLEDs

Figure 4. Application for Constant Output Voltage

Pin Description

Pin No.		Pin Name	Pin Function
TSOT-23-5	TSOT-23-6		
1	1	LX	Switch Pin. Connect this Pin to inductor and catch diode. Minimize the track area to reduce EMI.
2	2	GND	Ground Pin.
3	3	FB	Feedback Reference Voltage Pin. Series connect a resistor between WLED and ground as a current sense. Sense the current feedback voltage to set the current rating.
4	4	EN	Chip Enable (Active High). Voltage sensing input to trigger the function of over voltage protection. Note that this pin is high impedance. There should be a pull low $100 \mathrm{k} \Omega$ resistor connected to GND when the control signal is floating.
--	5	OVP	Over Voltage Protection Pin. Voltage sensing input to trigger the function of over voltage protection. Leave it unconnected to disable this function.
5	6	VDD	Supply Input Voltage Pin. Bypass 1uF capacitor to GND to reduce the input noise.

Function Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Input Voltage -0.3 V to 7 V
- LX Input Voltage -0.3 V to 22 V
- OVP Voltage -0.3 V to 22 V
- The Other Pins -0.3 V to 6 V- Power Dissipation, $\mathrm{P}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$TSOT-23-50.455 W
TSOT-23-6 0.455 W
- Package Thermal Resistance (Note 2)
TSOT-23-5, θ_{JA} $220^{\circ} \mathrm{C} / \mathrm{W}$
TSOT-23-6, $\theta_{\text {JA }}$ $220^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
- ESD Susceptibility (Note 3)
HBM (Human Body Mode) 2kV
MM (Machine Mode) 200V
Recommended Operating Conditions (Note 4)
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Ambient Temperature Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=3.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
System Supply Input						
Operation Voltage Range	VDD		2.7	--	5.5	V
Under Voltage Lock Out	$V_{\text {DD }}$		1.8	2.2	2.5	V
Quiescent Current	IDD	FB $=1.5 \mathrm{~V}$, No switch	50	300	1000	uA
Supply Current	IDD	FB $=0 \mathrm{~V}$, Switch	0.1	2	3	mA
Shut Down Current	IDD	$\mathrm{V}_{\mathrm{EN}}<0.4 \mathrm{~V}$	--	--	1	uA
Line Regulation		$\mathrm{V}_{\text {IN }}=3.0$ to 4.3 V	--	3	--	\%
Oscillator						
Operation Frequency	fosc		0.9	1.2	1.5	MHz
Maximum Duty Cycle			85	--	--	\%
Reference Voltage						
Feedback Voltage (Note 5)	RT9284A		1.173	1.235	1.296	V
	RT9284B		0.237	0.25	0.263	

To be continued

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
MOSFET						
On Resistance of MOSFET	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$		--	0.75	--	Ω
Protection						
OVP Threshold	Vovp	for 2,3,4 WLEDs application	14	15	16	V
		for 5 WLEDs application	19	20	21	V
OVP Sink Current			--	5	--	$\mu \mathrm{A}$
OCP			--	750	--	mA
Shut Down Voltage	V_{EN}		--	--	0.4	V
Enable Voltage	$V_{\text {EN }}$		1.5	--	--	V

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
Note 2. θ_{JA} is measured in the natural convection at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Floating the OVP pin to disable OVP function.

Typical Operating Characteristics

Efficiency vs. Input Voltage

Maximum Duty Cycle vs. VDD

Shut Down Voltage vs. Input Voltage

LED Current vs. Input Voltage

POR (Rising/Falling) vs. Temperature

Feedback Voltage vs. Temperature

Dimming Operation

Time ($400 \mu \mathrm{~s} / \mathrm{Div}$)

Switching Frequency vs. Temperature

Dimming Operation

Inrush Current

Time ($500 \mu \mathrm{~s} / \mathrm{Div}$)

Inrush Current

Time ($500 \mu \mathrm{~s} /$ Div)

Application Information

Power Sequence

The RT9284A/B must take notice of the power sequence. The power sequence of RT9284A/B has to VDD early than EN or else the RT9284A/B maybe fall into the unknown state to result in RT9284A/B turn off.

Figure 5

LED Current Control

The RT9284A/B regulates the LED current by setting the current sense resistor (R1) connecting to feedback and ground. As shown in Table 1, the RT9284A feedback voltage $\left(V_{F B}\right)$ is 1.235 V and the RT 9284 B feedback voltage $\left(V_{F B}\right)$ is 0.25 V . The LED current ($\mathrm{l}_{\text {LED }}$) can be set by a resistor R1. In order to have an accurate LED current, a precision resistor is preferred (1% is recommended).

Table 1

Version	Feedback Reference Voltage $\mathrm{V}_{\mathrm{FB}}(\mathrm{V})$	LED Current Setting ILED (A)
RT9284A	1.235	$\mathrm{l}_{\text {LED }}=1.235 / \mathrm{R} 1$
RT9284B	0.25	$\mathrm{l}_{\text {LED }}=0.25 / \mathrm{R} 1$

Dimming Control

a. Using a PWM Signal to EN Pin

For controlling the LED brightness, the RT9284A/B can perform the dimming control by applying a PWM signal to EN pin. The internal soft start and the wide range dimming frequency can eliminate inrush current and audio noise when dimming. The average LED current is proportional to the PWM signal duty cycle. The magnitude of the PWM signal should be higher than the maximum enable voltage of EN pin, in order to let the dimming control perform correctly for preventing the flicker issue, the suqqested PWM frequency is $\geq 1 \mathrm{kHz}$ or $\leq 200 \mathrm{~Hz}$.

b. Using a DC Voltage

Using a variable DC voltage to adjust the brightness is a popular method in some applications. The dimming control using a DC voltage circuit is shown in Figure 6. According to the Superposition Theorem, as the DC voltage increases, the voltage contributed to $V_{F B}$ increases and the voltage drop on R2 decreases, i.e. the LED current decreases. For example, if the $V_{D C}$ range is from $0 V$ to 2.8 V , the selection of resistors in Figure 6 sets dimming control of LED current from 20 mA to 0 mA .

Figure 6. Dimming Control Using a DC Voltage for RT9284A

The LED current can be calculated by the following equation.

c. Using a Filtered PWM signal :

Another common application is using a filtered PWM signal as an adjustable DC voltage for LED dimming control. A filtered PWM signal acts as the DC voltage to regulate the output current. The recommended application circuit is shown in the Figure 7. In this circuit, the output ripple depends on the frequency of PWM signal. For smaller output voltage ripple ($<100 \mathrm{mV}$), the recommended frequency of 2.8 V PWM signal should be above 2 kHz . To fix the frequency of PWM signal and change the duty cycle of PWM signal can get different output current. Figure 8. shows the relationship between LED current and PWM duty cycle.

Figure 7. Filtered PWM Signal for LED Dimming Control of RT9284A

The LED current can be calculated by the following equation.

$$
\text { LLED }=\frac{\mathrm{V}_{F B}-\frac{\mathrm{R} 2 \times\left(\mathrm{V}_{P W M} \times \text { Duty }-\mathrm{V}_{\mathrm{FB}}\right)}{\mathrm{R} 3+\mathrm{R}_{\mathrm{DC}}}}{\mathrm{R} 1}
$$

Figure 8

Inductor Selection

The recommended value of inductor for 3 to 5 WLEDs applications are 4.7 to $22 \mu \mathrm{H}$. Small size and better efficiency are the major concerns for portable device, such as RT9284A/B used for mobile phone. The inductor should have low core loss at 1.2 MHz and low DCR for better efficiency. To avoid inductor saturation current rating should be considered.

Capacitor Selection

Input and output ceramic capacitors of $1 \mu \mathrm{~F}$ are recommended for RT9284A/B applications. For better voltage filtering, ceramic capacitors with low ESR are recommended. X5R and X7R types are suitable because of their wider voltage and temperature ranges.

Diode Selection

Schottky diode is a good choice for RT9284A/B because of its low forward voltage drop and fast reverse recovery.

Using Schottky diode can get better efficiency. The highspeed rectification is also a good characteristic of Schottky diode for high switching frequency. Current rating of the diode must meet the root mean square of the peak current and output average current multiplication as following :

$$
\mathrm{I}_{\mathrm{D}}(\mathrm{RMS}) \approx \sqrt{\left(\mathrm{I}_{\text {OUT }} \times \mathrm{I}_{\text {PEAK }}\right)}
$$

The diode' s reverse breakdown voltage should be larger than the output voltage. SS0520 is recommended Schottky diode for rectifier.

Layout Guide

- A full GND plane without gap break.
- VCC to GND noise bypass-Short and wide connection for the $1 \mu \mathrm{~F}$ MLCC capacitor between Pin6 and Pin2.
- Minimized LX node copper area to reduce EMI.
- Minimized FB node copper area and keep far away from noise sources.

Figure 9. Top Layer

Figure 10. Bottom Layer

Outline Dimension

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
B	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
C	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-5 Surface Mount Package

A1

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	0.700	1.000	0.028	0.039
A1	0.000	0.100	0.000	0.004
B	1.397	1.803	0.055	0.071
b	0.300	0.559	0.012	0.022
C	2.591	3.000	0.102	0.118
D	2.692	3.099	0.106	0.122
e	0.838	1.041	0.033	0.041
H	0.080	0.254	0.003	0.010
L	0.300	0.610	0.012	0.024

TSOT-23-6 Surface Mount Package

Richtek Technology Corporation

Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.

