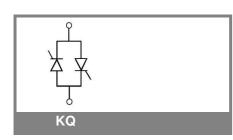
SK 100 KQ

SEMITOP[®] 2

Antiparallel Thyristor Module

SK 100 KQ

Preliminary Data

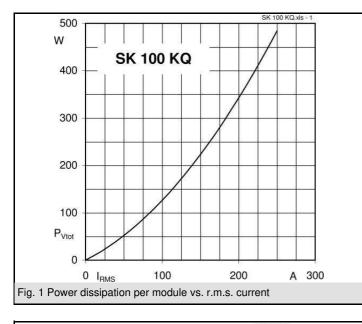

Features

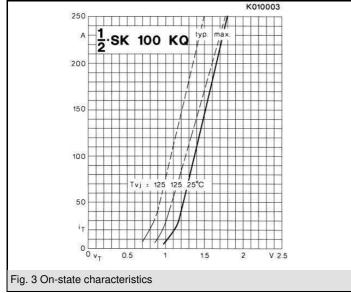
- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532

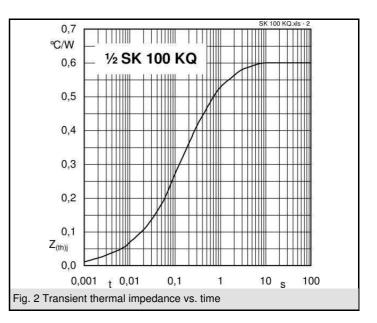
Typical Applications*

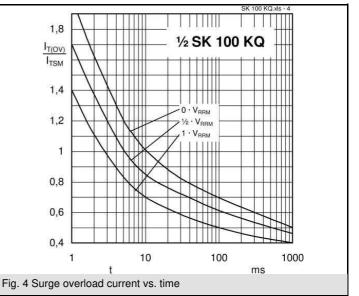
- Soft starters
- Light control (studios, theaters...)
- Temperature control

V _{RSM}	V _{RRM} , V _{DRM}		I _{RMS} = 101 A (full conduction)		
V	V		(T _s = 85 °C)		
900	800	SK 100 KQ 08			
1300			SK 100 KQ 12		
1700			SK 100 KQ 16		
	1000				
Symbol	Conditions		Values	Units	
I _{RMS}	W1C ; sin. 180° ; T _s = 100°C		71	А	
	W1C ; sin. 180° ; T _s = 85°0	2	101	А	
I _{TSM}	T _{vi} = 25 °C ; 10 ms		1500	А	
	T _{vi} = 125 °C ; 10 ms		1350	А	
i²t	T _{vi} = 25 °C ; 8,310 ms		11250	A²s	
	T _{vj} = 125 °C ; 8,310 ms		9100	A²s	
V _T	T _{vi} = 25 °C, I _T = 200 A		max. 1,8	V	
V _{T(TO)}	T _{vi} = 125 °C		max. 0,9	V	
r _T	T _{vj} = 125 °C		max. 4,5	mΩ	
I _{DD} ;I _{RD}	$T_{vj} = 25 \text{ °C}, V_{RD} = V_{RRM}$		max. 1	mA	
	T_{vj} = 125 °C, V_{RD} = V_{RRM}		max. 20	mA	
t _{gd}	$T_{vj} = 25 \text{ °C}, I_G = 1 \text{ A}; di_G/dt$	t= 1 A/µs	1	μs	
t _{gr}	V _D = 0,67 *V _{DRM}		2	μs	
(dv/dt) _{cr}	T _{vi} = 125 °C		1000	V/µs	
(di/dt) _{cr}	T _{vi} = 125 °C; f= 5060 Hz		100	A/µs	
t _q	T _{vj} = 125 °C; typ.		80	μs	
I _H	T _{vj} = 25 °C; typ. / max.		100 / 200	mA	
Ι _L	T_{vj} = 25 °C; R_G = 33 Ω ; typ. / max.		200 / 500	mA	
V _{GT}	T _{vj} = 25 °C; d.c.		min. 2	V	
I _{GT}	$T_{vj} = 25 \ ^{\circ}C; \ d.c.$		min. 100	mA	
V _{GD}	T _{vj} = 125 °C; d.c.		max. 0,25	V	
I _{GD}	T _{vj} = 125 °C; d.c.		max. 5	mA	
R _{th(j-s)}	cont. per thyristor		0,6	K/W	
	sin 180° per thyristor		0,63	K/W	
R _{th(j-s)}	cont. per W1C		0,3	K/W	
-	sin 180° per W1C		0,315	K/W	
T _{vj} T			-40 +125	°C O°	
T _{stg}			-40 +125	°C	
T _{solder}	terminals, 10s		260	°C	
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 r		3000 / 2500	V~	
М _s	Mounting torque to heatsin	k	2,0	Nm	
M _t				Nm	
a			40	m/s²	
m			19	g	

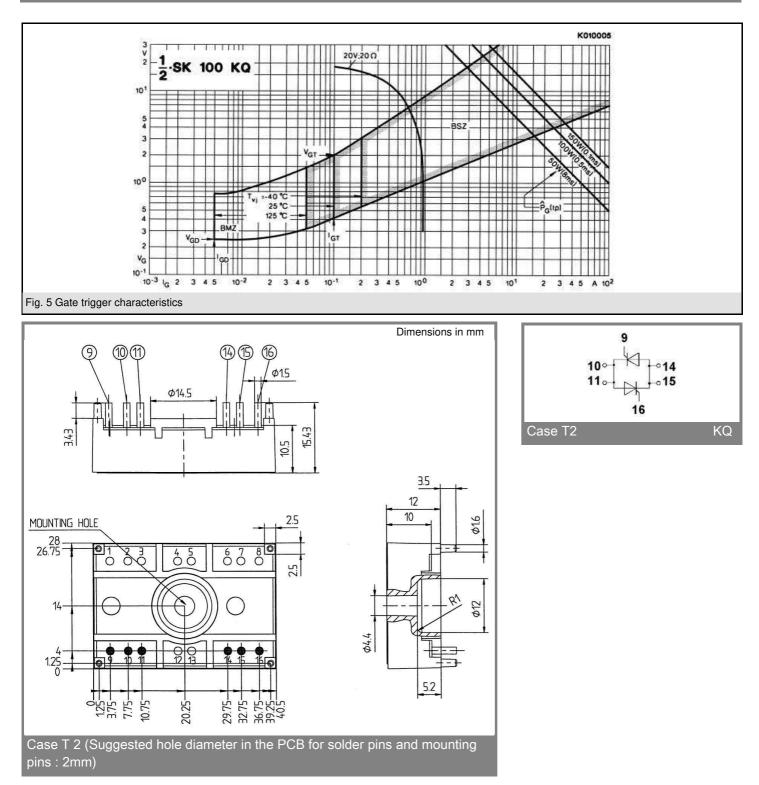

SEMITOP[®] 2


Case


© by SEMIKRON


Т2

SK 100 KQ



SK 100 KQ

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.