## **SKDT 100**



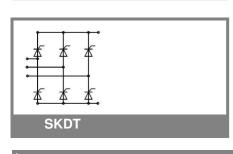
SEMIPONT<sup>®</sup> 2

# Controllable Bridge Rectifiers

#### **SKDT 100**

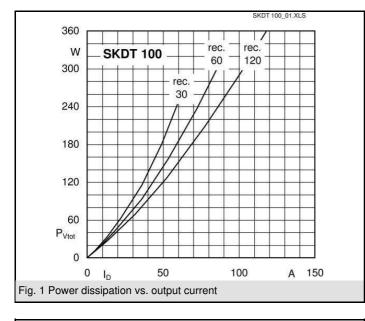
#### Features

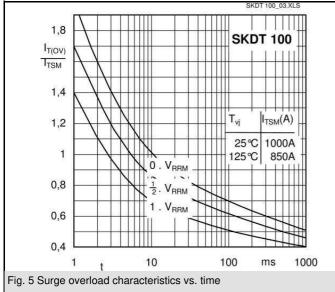
- Fully controlled three phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- Easy chassis mounting
- UL recognized, file no. E 63 532

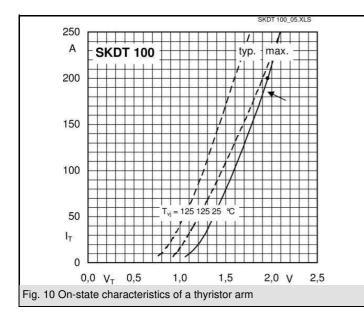

### **Typical Applications**

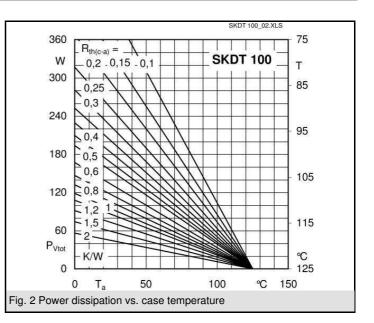
- For DC drives with a fixed direction of rotation
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers

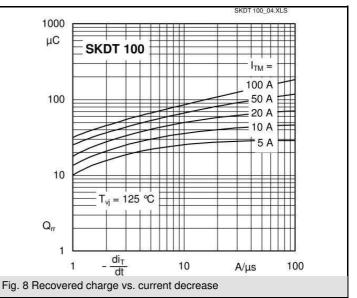
1) Painted metal shield of minimum 250 x 250 x 1 mm:  $R_{th(c-a)} = 1.8 \text{ K/W}$ 

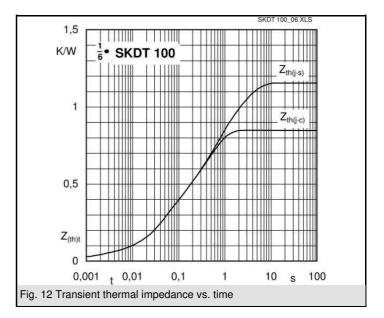

| V <sub>RSM</sub> | V <sub>RRM</sub> , V <sub>DRM</sub> | I <sub>D</sub> = 100 A (full conduction) |
|------------------|-------------------------------------|------------------------------------------|
| V                | V                                   | (T <sub>c</sub> = 84 °C)                 |
| 900              | 800                                 | SKDT 100/08                              |
| 1300             | 1200                                | SKDT 100/12                              |
| 1500             | 1400                                | SKDT 100/14                              |
| 1700             | 1600                                | SKDT 100/16                              |
|                  |                                     |                                          |


| Symbol                              | Conditions                                                                  | Values        | Units |
|-------------------------------------|-----------------------------------------------------------------------------|---------------|-------|
| I <sub>D</sub>                      | T <sub>c</sub> = 85 °C                                                      | 98            | А     |
|                                     | T <sub>a</sub> = 45 °C; chassis <sup>1)</sup>                               | 20            | А     |
|                                     | T <sub>a</sub> = 45 °C; P13A/125                                            | 25            | А     |
|                                     | T <sub>a</sub> = 45 °C; P1A/120                                             | 45            | А     |
| I <sub>TSM</sub> , I <sub>FSM</sub> | T <sub>vi</sub> = 25 °C; 10 ms                                              | 1000          | A     |
|                                     | T <sub>vi</sub> = 125 °C; 10 ms                                             | 850           | А     |
| i²t                                 | T <sub>vj</sub> = 25 °C; 8,3 10 ms                                          | 5000          | A²s   |
|                                     | T <sub>vj</sub> = 125 °C; 8,3 10 ms                                         | 3600          | A²s   |
| V <sub>T</sub>                      | T <sub>vi</sub> = 25 °C; I <sub>T</sub> =200 A                              | max. 1,95     | V     |
| V <sub>T(TO)</sub>                  | T <sub>vi</sub> = 125 °C;                                                   | max. 1        | V     |
| r <sub>T</sub>                      | T <sub>vi</sub> = 125 °C                                                    | max. 4,5      | mΩ    |
| I <sub>DD</sub> ; I <sub>RD</sub>   | $T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$               | max. 15       | mA    |
| t <sub>gd</sub>                     | T <sub>vi</sub> = 25 °C; I <sub>G</sub> = 1 A; di <sub>G</sub> /dt = 1 A/μs | 1             | μs    |
| t <sub>gr</sub>                     | $V_{D} = 0.67 \cdot V_{DRM}$                                                | 1             | μs    |
| (dv/dt) <sub>cr</sub>               | T <sub>vi</sub> = 125 °C                                                    | max. 500      | V/µs  |
| (di/dt) <sub>cr</sub>               | T <sub>vi</sub> = 125 °C; f = 50 Hz                                         | max. 50       | A/µs  |
| t <sub>q</sub>                      | T <sub>vi</sub> = 125 °C; typ.                                              | 80            | μs    |
| I <sub>H</sub>                      | $T_{vj} = 25 \text{ °C; typ. / max.}$                                       | 100 / 200     | mA    |
| I <sub>L</sub>                      | $T_{vj} = 25 \text{ °C}; R_G = 33 \Omega$                                   | 250 / 400     | mA    |
| V <sub>GT</sub>                     | T <sub>vi</sub> = 25 °C; d.c.                                               | min. 3        | V     |
| I <sub>GT</sub>                     | T <sub>vi</sub> = 25 °C; d.c.                                               | min. 150      | mA    |
| V <sub>GD</sub>                     | T <sub>vi</sub> = 125 °C; d.c.                                              | max. 0,25     | V     |
| I <sub>GD</sub>                     | T <sub>vj</sub> = 125 °C; d.c.                                              | max. 5        | mA    |
| R <sub>th(j-c)</sub>                | per thyristor / diode                                                       | 0,85          | K/W   |
| - 0 -/                              | total                                                                       | 0,141         | K/W   |
| R <sub>th(c-s)</sub>                | total                                                                       | 0,05          | K/W   |
| T <sub>vi</sub>                     |                                                                             | - 40 + 125    | .0°   |
| T <sub>vj</sub><br>T <sub>stg</sub> |                                                                             | - 40 + 125    | °C    |
| V <sub>isol</sub>                   | a. c. 50 Hz; r.m.s.; 1 s / 1 min.                                           | 3600 ( 3000 ) | V     |
| visol<br>M <sub>s</sub>             | to heatsink                                                                 | 5             | Nm    |
| M <sub>s</sub><br>M <sub>t</sub>    | to terminals                                                                | 3             | Nm    |
| m                                   |                                                                             | 165           | g     |
| Case                                | SKDT                                                                        | G 21          |       |



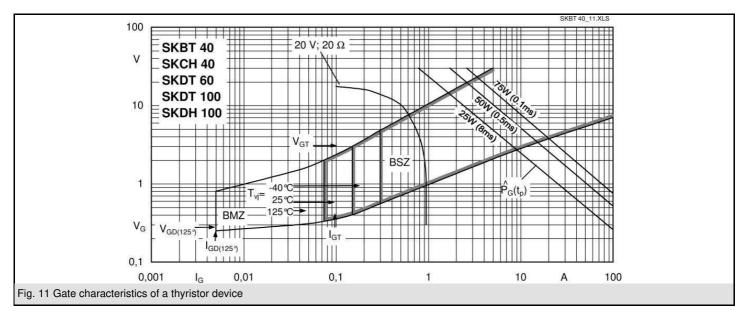


© by SEMIKRON

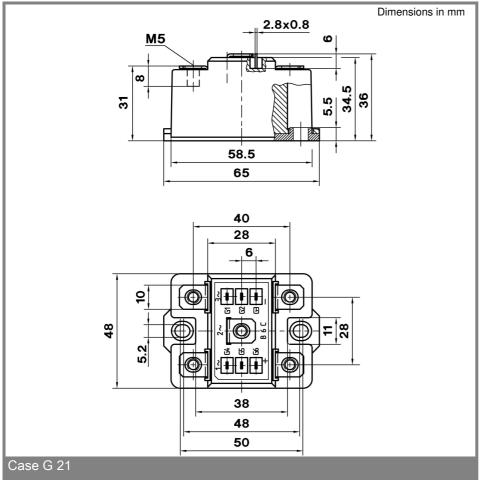

## **SKDT 100**










2

## **SKDT 100**





This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.