SKT₁₀

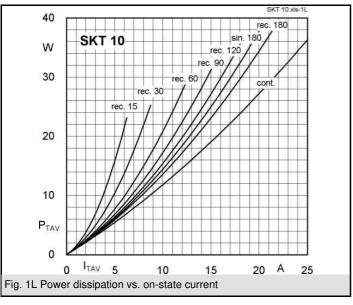
Stud Thyristor

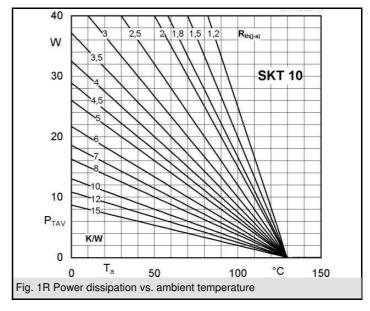
Line Thyristor

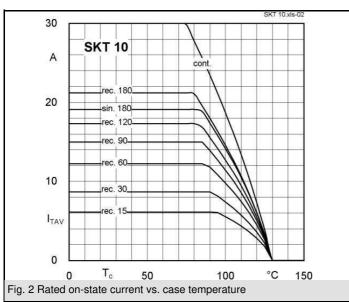
SKT 10

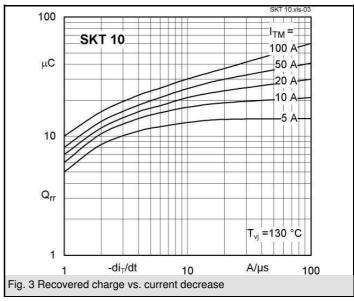
Features

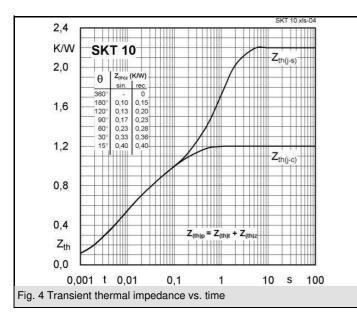
- Hermetic metal case with glass insulator
- Threaded stud ISO M5
- · International standard case

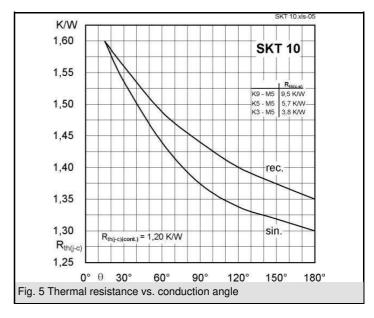

Typical Applications*

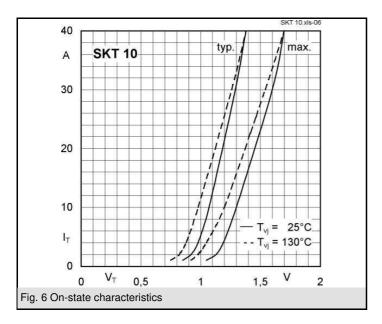

- DC motor control (e. g. for machine tools)
- Controlled rectifiers(e. g. for battery charging)
- AC controllers
 (e. g. for temperature control)
- Recommended snubber network e.g. for $V_{VRMS} \le 400 \text{ V}$: R = 100 $\Omega/5$ W, C = 0,1 μF

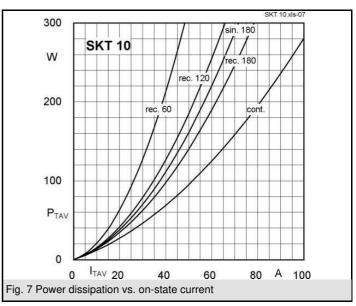

V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 30 A (maximum value for continuous operation)		
V	V	I _{TAV} = 10 A (sin. 180; T _c = 111 °C)		
700	600	SKT 10/06D		
900	800	SKT 10/08D		
1300	1200	SKT 10/12E		

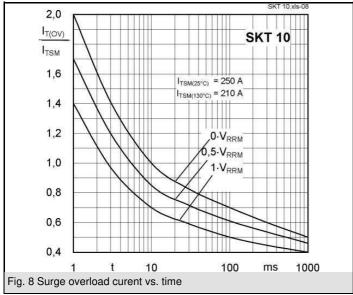

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	14 (19)	Α
I _D	K9; T _a = 45 °C; B2 / B6	12 / 16,5	Α
	K5; T _a = 45 °C; B2 / B6	17 /24	Α
I _{RMS}	K9; T _a = 45 °C; W1C	13	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	250	Α
	T_{vj}^{3} = 130 °C; 10 ms	210	Α
i²t	$T_{vj} = 25 ^{\circ}\text{C}; 8,35 \dots 10 \text{ms}$	310	A²s
	T _{vj} = 130 °C; 8,35 10 ms	220	A²s
V _T	$T_{vj} = 25 ^{\circ}\text{C}; I_T = 30 \text{A}$	max. 1,6	V
$V_{T(TO)}$	$T_{vj} = 130 ^{\circ}C$	max. 1	V
r _T	$T_{vj} = 130 ^{\circ}C$	max. 18	mΩ
I _{DD} ; I _{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 4	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 125 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vj} = 125 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	$T_{vj}^{3} = 130 ^{\circ}\text{C}$,	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	80 / 150	mA
IL	T_{vj} = 25 °C; typ. / max.	150 / 300	mA
V _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 3	mA
R _{th(j-c)}	cont.	1,2	K/W
$R_{th(j-c)}$	sin. 180	1,3	K/W
R _{th(j-c)}	rec. 120	1,35	K/W
R _{th(c-s)}		1	K/W
T_{vj}		- 40 + 130	°C
T _{stg}		- 40 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	2,0	Nm
а		5 * 9,81	m/s²
m	approx.	7	g
Case		B 1	

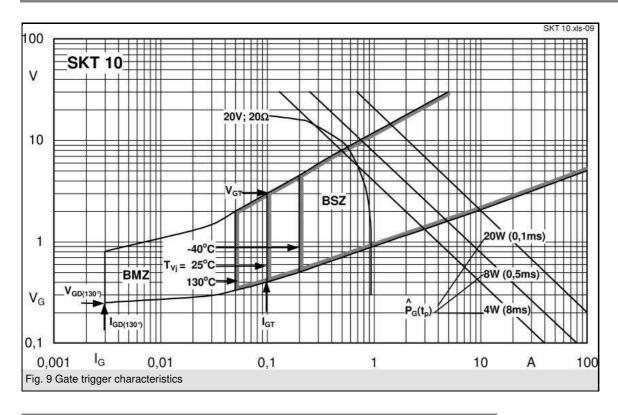


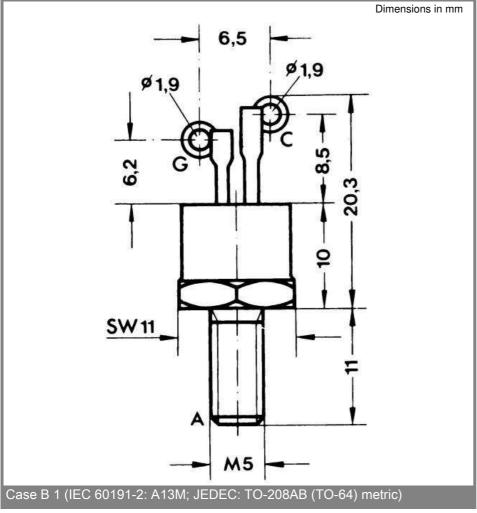











SKT 10

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 10

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.