

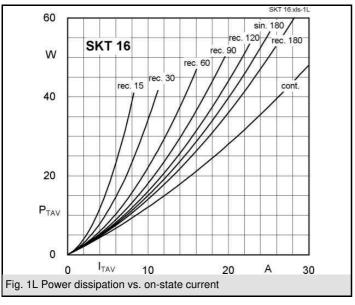
V _{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 40 A (maximum value for continuous operation)		
V	V	I _{TAV} = 16 A (sin. 180; T _c = 104 °C)		
500	400	SKT 16/04D		
700	600	SKT 16/06D ¹⁾		
900	800	SKT 16/08D		
1300	1200	SKT 16/12E ¹⁾		
1500	1400	SKT 16/14E		
1700	1600	SKT 16/16E		
1900	1800	SKT 16/18E		

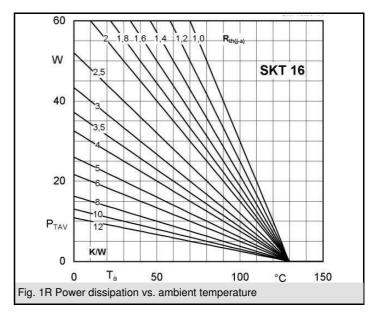
Stud Thyristor

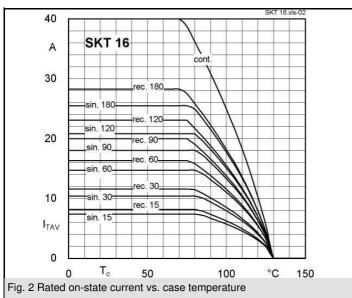
Line Thyristor

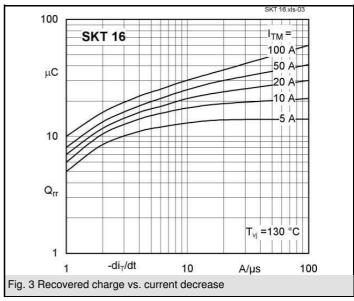
SKT 16

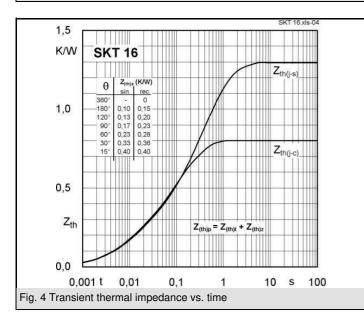
Features

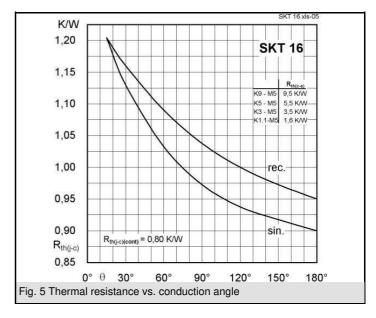

- Hermetic metal case with glass insulator
- Threaded stud ISO M6 or UNF 1/4-28
- · International standard case

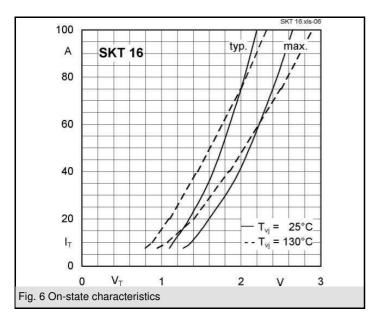

Typical Applications*

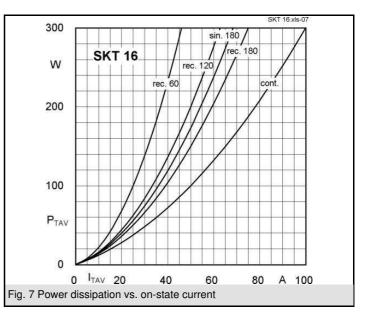

- DC motor control (e. g. for machine tools)
- Controlled rectifiers (e. g. for battery charging)
- AC controllers
 Ac a for temperature
 - (e. g. for temperature control)
- Recommended snubber network e. g. for $V_{VRMS} \le 400 \text{ V}$: R = 100 $\Omega/5$ W, C = 1 μF
- 1) Available with UNF thread 1/4-28 UNF2A, e. g. SKT 16/06D UNF

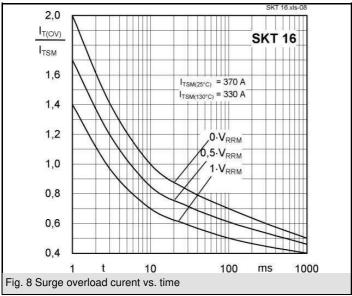

Symbol	Conditions	Values	Units
I _{TAV}	sin. 180; T _c = 100 (85) °C;	18 (23)	Α
I_D	K5; T _a = 45 °C; B2 / B6	18 / 24	Α
	K3; T _a = 45 °C; B2 / B6	24 /33	Α
I _{RMS}	K5; T _a = 45 °C; W1C	20	Α
I _{TSM}	T _{vj} = 25 °C; 10 ms	370	Α
	$T_{vj} = 130 ^{\circ}\text{C}; 10 \text{ms}$	330	Α
i²t	T _{vj} = 25 °C; 8,35 10 ms	680	A²s
	T _{vj} = 130 °C; 8,35 10 ms	550	A²s
V _T	T _{vj} = 25 °C; I _T = 75 A	max. 2,4	V
$V_{T(TO)}$	T _{vj} = 130 °C	max. 1	V
r_T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 20	$m\Omega$
I_{DD} ; I_{RD}	T_{vj} = 130 °C; V_{RD} = V_{RRM} ; V_{DD} = V_{DRM}	max. 8	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 * V_{\rm DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 50	A/µs
(dv/dt) _{cr}	T _{vj} = 130 °C ; SKTD / SKTE	max. 500 / 1000	V/µs
t _q	$T_{vj} = 130 ^{\circ}\text{C}$,	80	μs
I _H	T_{vj} = 25 °C; typ. / max.	80 / 150	mA
IL	T_{vj} = 25 °C; typ. / max.	150 / 300	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	٧
I_{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 100	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	T_{vj} = 130 °C; d.c.	max. 3	mA
R _{th(j-c)}	cont.	0,8	K/W
R _{th(j-c)}	sin. 180	0,9	K/W
R _{th(j-c)}	rec. 120	0,95	K/W
R _{th(c-s)}		0,5	K/W
T_{vj}		- 40 + 130	°C
T_{stg}		- 40 + 150	°C
V _{isol}		-	V~
M _s	to heatsink	2,5	Nm
а		5 * 9,81	m/s²
m	approx.	13	g
Case		B 2	

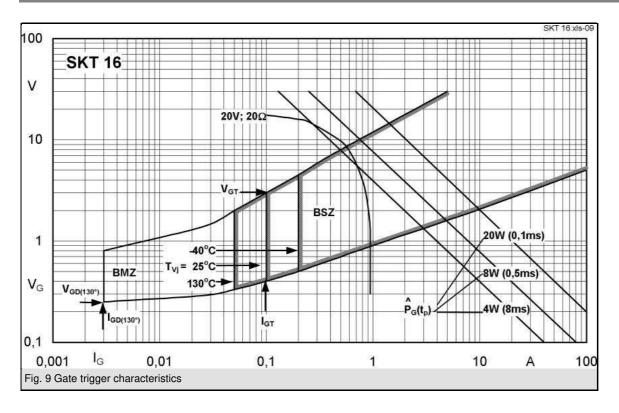


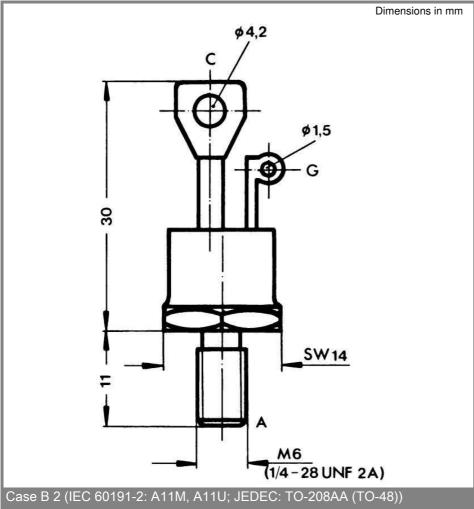











SKT 16

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON

SKT 16

products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.