

RHF100

Rad-hard, 1.2 V, precision shunt, voltage reference

Datasheet - production data

Features

- Fixed shunt: 1.2 V stable on capacitive load
- High precision ±0.15 %
- Wide operating current: 40 µA to 12 mA
- 15 ppm/°C over temperature range
- 2 ppm/°C variation over 3000 hrs
- 0.02 % precision stability over 3000 hrs
- 300 krad high and low dose rate
- ELDRS-free up to 300 krad
- 0.03 % precision stability over 100 krad
- 0.08 % precision stability over 300 krad
- SEL-free up to 120 MeV.cm²/mg
- SET characterized

Applications

- Space systems
- Space data acquisition systems
- Aerospace instrumentation
- ADC references

Description

The RHF100 is a 1.2 V precision, low-power, fixed shunt, voltage reference dedicated to space applications.

Mounted in a Flat-10 hermetic ceramic package, the RHF100 uses dedicated architecture and design rules to provide the best immunity against radiation.

The very low operating current and very good stability over a wide temperature range stretching from -55 °C to 125 °C make the RHF100 particularly suitable for precision and power saving.

Parameter	RHF100K1 RHF100K01V			
SMD pin	_	5962F14225		
Quality level	Engineering model QML-V flight			
Package	Flat-10	10		
Lead finish	Gold	Gold		
Mass	0.50 g			
EPPL ⁽¹⁾	—	Target		
Temp. range	-55 °C to 125 °C			

Table 1: Device summary

Notes:

⁽¹⁾EPPL = ESA preferred part list

November 2017

DocID023928 Rev 3

This is information on a product in full production.

Contents

Con	tents			
1	Absolute	maximu	m ratings and operating conditions	6
2	Electrica	l charact	eristics	7
3	Radiatior	າຣ		9
4	Electrica	l charact	eristic curves	12
5	Paramete	ers and i	mplementation	23
	5.1	Introducti	on	23
	5.2	Average	emperature coefficient	23
	5.3	Minimum	and maximum cathode current	24
		5.3.1	Minimum operating cathode current	24
		5.3.2	Maximum operating cathode current (Ikmax.)	
	5.4	Capacitiv	e load considerations	24
		5.4.1	Design example with a variable output current load	25
6	Package	informat	ion	27
	6.1	Ceramic	Flat-10 package information	28
7	Ordering	informa	tion	
8	Other inf	ormatior	۱	
	8.1	Date cod	е	
	8.2	Documer	itation	
9	Revision	history		31

List of tables

Table 1: Device summary	1
Table 2: Absolute maximum ratings	6
Table 3: Operating conditions	
Table 4: Anode connected to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, unless otherwise	
specified	7
Table 5: Radiations	9
Table 6: Electrical characteristics after 100 krad (high-dose and low-dose rate), anode to GND (0 V), V	/k
referred to anode voltage, Ck = 100 nF, (unless otherwise specified)	9
Table 7: Electrical characteristics after 300 krad (high-dose and low-dose rate), anode to GND (0 V), V	′k
referred to anode voltage, Ck = 100 nF, (unless otherwise specified)	11
Table 8: Ceramic Flat-10 package mechanical data	28
Table 9: Order codes	29
Table 10: Documentation provided for QMLV flight	30
Table 11: Document revision history	31

List of figures

5	
Figure 1: Reverse breakdown voltage characteristic vs. cathode current	12
Figure 2: Zoom of reverse breakdown voltage characteristic vs. cathode current	
Figure 3: Reverse breakdown voltage characteristic vs. ambient temp	
Figure 4: Average temp. coefficient vs. cathode current	
Figure 5: Output impedance vs. freq. at 25 °C, Ck = 0	
Figure 6: Output impedance vs. freq. at -55 °C, Ck = 0	12
Figure 7: Output impedance vs. freq. at 125 °C, Ck = 0	13
Figure 8: Output impedance vs. freq. at 25 °C, Ck = 100 nF	13
Figure 9: Output impedance vs. freq. at -55 °C, Ck = 100 nF	13
Figure 10: Output impedance vs. freq. at 125 °C, Ck = 100 nF	
Figure 11: Output impedance vs. freq. at 25 °C, Ck = 470 nF	
Figure 12: Output impedance vs. freq. at -55 °C, Ck = 470 nF	
Figure 13: Output impedance vs. freq. at 125 °C, Ck = 470 nF	
Figure 14: Spectral noise density vs. freq. at 25 °C, Ck = 0	
Figure 15: Spectral noise density vs. freq. at -55 °C, Ck = 0	14
Figure 16: Spectral noise density vs. freq. at 125 °C, Ck = 0	14
Figure 17: Spectral noise density vs. freq. at 25 °C, Ck = 100 nF	
Figure 18: Spectral noise density vs. freq. at -55 °C, Ck = 100 nF	14
Figure 19: Spectral noise density vs. freq. at 125 °C, Ck = 100 nF	
Figure 20: Spectral noise density vs. freq. at 25 °C, Ck = 470 nF	
Figure 21: Spectral noise density vs. freq. at -55 °C, Ck = 470 nF	
Figure 22: Spectral noise density vs. freq. at 125 °C, $Ck = 470 \text{ nF}$.	
Figure 23: Cathode current step resp. at 25 °C, $Ck = 0$, $\Delta lk = 40 \mu$ A	
Figure 24: Cathode current step resp. at -55 °C, $Ck = 0$, $\Delta lk = 40 \ \mu A$	
Figure 25: Cathode current step resp. at 125 °C, Ck = 0, Δ lk = 40 μ A	
Figure 26: Cathode current step resp. at 25 °C, Ck = 100 nF, Δ Ik = 40 μ A Figure 27: Cathode current step resp. at -55 °C, Ck = 100 nF, Δ Ik = 40 μ A	
Figure 28: Cathode current step resp. at 125 °C, $Ck = 100$ nF, $\Delta lk = 40 \ \mu$ A	10
Figure 29: Cathode current step resp. at 25 °C, $Ck = 100$ Hr, $\Delta lk = 40$ µA	10
Figure 29. Cathode current step resp. at 25 °C, $Ck = 0$, $\Delta lk = 100 \ \mu A$	
Figure 31: Cathode current step resp. at 125 °C, $Ck = 0$, $\Delta lk = 100 \ \mu$ A	
Figure 32: Cathode current step resp. at 25 °C, $Ck = 0$, $\Delta lk = 100 \ \mu$ A	
Figure 33: Cathode current step resp. at -55 °C, Ck = 220 nF, Δ Ik = 100 μ A	
Figure 33: Cathode current step resp. at 125 °C, $Ck = 220$ nF, $\Delta lk = 100 \ \mu$ A	
Figure 35: Cathode current step resp. at 25 °C, $Ck = 220$ m , $\Delta lk = 1$ mA	
Figure 36: Cathode current step resp. at -55 °C, $Ck = 0$, $\Delta lk = 1$ mA	
Figure 37: Cathode current step resp. at 125 °C, $Ck = 0$, $\Delta lk = 1$ mA	
Figure 38: Cathode current step resp. at 25 °C, $Ck = 470 \text{ nF}$, $\Delta lk = 1 \text{ mA}$	
Figure 39: Cathode current step resp. at -55 °C, Ck = 470 nF, Δ lk = 1 mA	
Figure 40: Cathode current step resp. at 125 °C, $Ck = 470$ nF, $\Delta lk = 1$ mA	
Figure 41: Cathode current step resp. at 25 °C, $Ck = 0$, $\Delta lk = 10$ mA	
Figure 42: Cathode current step resp. at -55 °C, $Ck = 0$, $\Delta lk = 10$ mA	
Figure 43: Cathode current step resp. at 125 °C, $Ck = 0$, $\Delta lk = 10 mA$	
Figure 44: Cathode current step resp. at 25 °C, $Ck = 4.7 \ \mu\text{F}$, $\Delta Ik = 10 \text{ mA}$	
Figure 45: Cathode current step resp. at -55 °C, Ck = 4.7 μ F, Δ Ik = 10 mA	
Figure 46: Cathode current step resp. at 125 °C, $Ck = 4.7 \ \mu\text{F}$, $\Delta Ik = 10 \ \text{mA}$	
Figure 47: Vk long term stability from 0 hr to 1000 hrs	
Figure 48: Vk long term stability from 0 hr to 2000 hrs	
Figure 49: Vk long term stability from 0 hr to 3000 hrs	
Figure 50: Vk long term stability from 1000 hrs to 2000 hrs	
Figure 51: Vk long term stability from 2000 hr to 3000 hrs	
Figure 52: Average temperature coefficient at 0 hr, lk = 100 µA	
Figure 53: Average temperature coefficient at 1000 hrs, Ik = 100 µA	

Figure 54: Average temperature coefficient at 2000 hrs, lk = 100 µA	20
Figure 55: Average temperature coefficient at 3000 hrs, lk = 100 µA	21
Figure 56: Average temperature coefficient at 0 hr, lk = 10 mA	21
Figure 57: Average temperature coefficient at 1000 hrs, lk = 10 mA	21
Figure 58: Average temperature coefficient at 2000 hrs, lk = 10 mA	21
Figure 59: Average temperature coefficient at 3000 hrs, lk = 10 mA	21
Figure 60: Reverse breakdown voltage vs. cumulated radiation dose (0.01 rad/s)	21
Figure 61: Recommended operating area	22
Figure 62: Implementation used for the test and for the characterisation	23
Figure 63: Spectral noise density vs. frequency	25
Figure 64: Example 1	25
Figure 65: Ceramic Flat-10 package mechanical drawing	28

1

Absolute maximum ratings and operating conditions

Table 2: Absolute maximum ratings					
Symbol	Parameter	Value	Unit		
lĸ	Reverse breakdown cathode current	15			
lf	Forward current	20	mA		
T _{stg}	Storage temperature	-65 to +150	°C		
Tj	Maximum junction temperature	150	°C		
R _{thja}	Thermal resistance junction (T $_j$) to ambient (T $_a$)	140	°C/W		
Rthjc	Thermal resistance junction to case	40			
	HBM: human body model ⁽¹⁾	2	kV		
ESD	MM: machine model ⁽²⁾	200	V		
	CDM: charged device model ⁽³⁾	1.5	kV		

Notes:

 $^{(1)}$ Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

⁽²⁾Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of connected pin combinations while the other pins are floating.

⁽³⁾Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to the ground through only one pin.

Table 3: Operating conditions

Symbol	Parameter	Value	Unit
Ik _{min} .	Minimum operating cathode current ⁽¹⁾	40	μA
Ik _{max.}	Maximum operating cathode current ⁽¹⁾	12	mA
T _{amb}	Operating ambient temperature range	-55 to +125	°C

Notes:

⁽¹⁾Refer to Section 5.3: "Minimum and maximum cathode current"

2 Electrical characteristics

Tested parameters before radiation are shown in *Table 4: "Anode connected to GND (0 V), Vk referred to anode voltage,* Ck = 100 nF*, unless otherwise specified".*

Table 4: Anode connected to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, unless otherwise specified

Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit
DC perfo	rmance						
Vĸ	Reverse breakdown voltage	I _k = 100 μA	25 °C		1.2		V
				-1.8		1.8	mV
ΔV_k	Reverse breakdown voltage tolerance	I _k = 100 μA, burn in = 240 hrs	25 °C	- 0.15		0.15	%
	Deverse breekdewe veltege	I 100 u A life test		-2.3		2.3	mV
ΔV_k	Reverse breakdown voltage tolerance	$I_k = 100 \ \mu A$, life test = 3000 hrs	25 °C	- 0.19		0.19	%
		Refer to Section 5.3:	-55 °C			40	
I _{kmin}	Minimum operating cathode current	"Minimum and maximum cathode	25 °C			40	μA
	current	current"	125 °C			40	
	Average temperature coefficient	$I_k = 100 \ \mu A$,	-55 °C		5	15	
$\Delta V_k / \Delta T$	$\frac{Vkmax - Vkmin}{180^{\circ}C \times Vk(25^{\circ}C)} \times 10^{6}$	I _k = 10 mA	to 125 °C		5	15	ppm/°C
	Average reverse breakdown voltage change vs. operating current change	$I_{kmin} \leq I_k \leq 1 \text{ mA}$	-55 °C		0.19	0.3	- mV
			25 °C		0.2	0.31	
$\Delta V_k vs.$			125 °C		0.22	0.34	
Δl _k			-55 °C		1.2	2.4	IIIV
		1 mA ≤ I _k ≤ 12 mA	25 °C		1.5	3	-
			125 °C		1.7	3.4	
	Equivalent reverse static		-55 °C		0.1	0.17	
R _{ka}	Equivalent reverse static resistance	$\Delta I_k = I_{kmin}$. to 10 mA	25 °C		0.11	0.19	
			125 °C		0.15	0.26	Ω
		I _k = 1 mA to 1.1 mA, F ≤ 1 kHz, no	-55 °C		0.4		
Z _{ka}	Equivalent reverse dynamic impedance		25 °C		0.4		
		capacitive load	125 °C		0.5		
		I _k = 100 μA, F= 1	-55 °C		380		nV/√
en	Spectral density voltage noise	kHz	25 °C		440		Hz
			125 °C		490		
Kvh ⁽¹⁾	Vk long-term stability <u>Vk(0hr) –Vk(xxxxhrs)</u> x 100 Vk(0hr)	$I_{k} = 100 \ \mu A$, 1000 hrs			0.02		
		$I_k = 100 \ \mu A$, 2000 hrs	25 °C		0.019		%
		$I_k = 100 \ \mu A$, 3000 hrs			0.018		

Electrical characteristics

Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit
KvTc ⁽¹⁾	Average temperature coefficient long-term stability ΔV _k /ΔT(0 hr) - ΔV _k /ΔT(xxxx hrs)	$I_k = 100 \ \mu A, I_k = 10$ mA, 1000 hrs	-55 °C to 125 °C		2		ppm/°C
		$I_k = 100 \ \mu A, I_k = 10$ mA, 2000 hrs			2		
KvTc ⁽¹⁾	Average temperature coefficient long-term stability $\Delta V_k / \Delta T(0 \text{ hr}) - \Delta V_k / \Delta T(xxxx \text{ hrs})$	I _k = 100 μA, I _k = 10 mA, 3000 hrs	-55 °C to 125 °C		2		ppm/°C

Notes:

⁽¹⁾Fiability is done with a cathode current setting, $I_k = 10$ mA and Ta = 125 °C. 0 hr corresponds to an initial burn-in of 240 hrs.

3 Radiations

Total ionizing dose (MIL-STD-883 TM 1019)

The products guaranteed by radiation within the RHA QML-V system, fully comply with the MIL-STD-883 TM 1019 specification.

The RHF100 is RHA QML-V, tested and characterized in full compliance with the MIL-STD-883 specification, both below 10 mrad/s and between 50 and 300 rad/s.

These parameters are shown in *Table 6: "Electrical characteristics after 100 krad (high-dose and low-dose rate), anode to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, (unless otherwise specified)" after 100 krad and <i>Table 7: "Electrical characteristics after 300 krad (high-dose and low-dose rate), anode to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, (unless otherwise specified)" after 300 krad (both high- and low-dose rate), as follows:*

- All tests are performed in accordance with MIL-PRF-38535 and the test method 1019 of the MIL-STD-883 for total ionizing dose (TID).
- The ELDRS characterization is performed in qualification only on both biased and unbiased parts, on a sample of ten units for high-dose rate and ten units for low-dose rate from two different wafer lots.
- In the frame of the wafer lot acceptance, each wafer lot is tested at high-dose rate only, in the worst bias case condition, based on the results obtained during the initial qualification.

Heavy ions

The behavior of the product when submitted to heavy ions is not tested in production. Heavy ion trials are performed on qualification lots only.

Туре	Characteristics Value Unit		Unit	
	180 krad/h high-dose rate (50 rad/sec) up to:	300		
TID	ELDRS free up to:	300	krad	
	36 rad/h low-dose rate (0.01 rad/sec) up to:	300		
	SEL immunity (at 125 °C, with a particle angle of 60 °) up to:	120		
Heavy ions	SEL immunity (at 125 °C, with a particle angle of 0 °) up to:	60	MeV.cm²/mg	
	SET (at 25 °C)	Characterized		

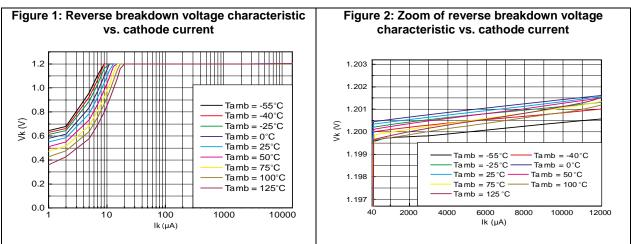
Table 5: Radiations

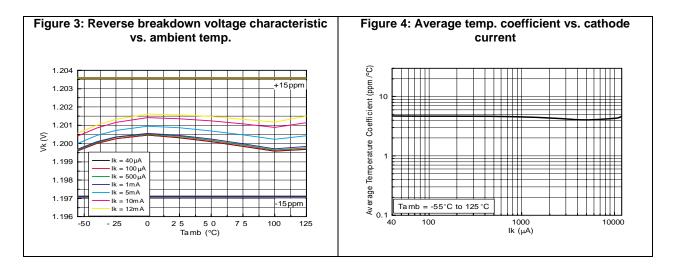
Table 6: Electrical characteristics after 100 krad (high-dose and low-dose rate), anode to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, (unless otherwise specified)

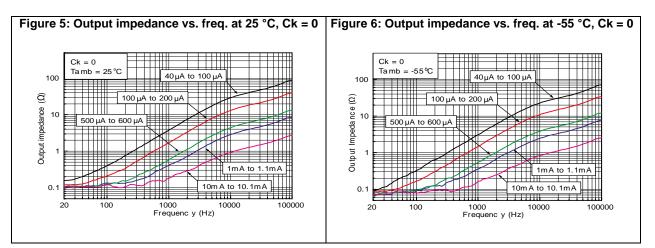
Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit
DC perfo	DC performance						
V _k	Reverse breakdown voltage	I _κ = 100 μA	25 °C		1.2		V
	Reverse breakdown voltage				±1.8		mV
ΔV _k	tolerance	I _k = 100 μA	25 °C		±0.5		%

	57	'
--	----	---

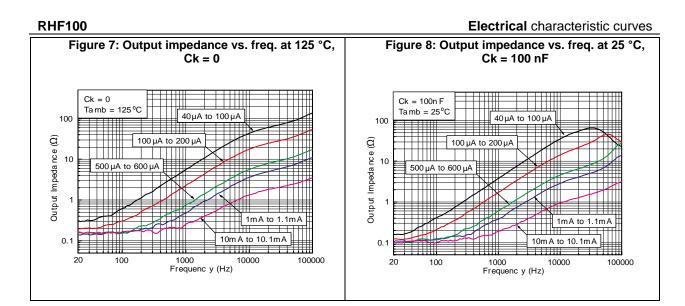
Radiations

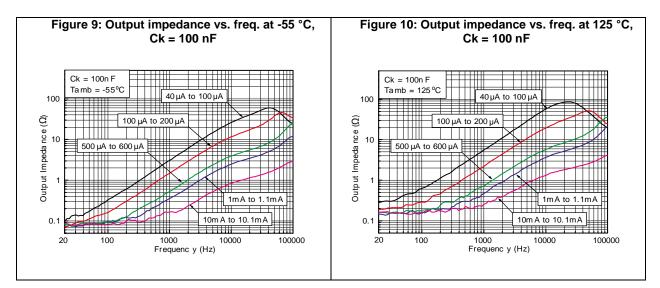

Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit	
I _{kmin}	Minimum operating cathode current	Refer to Section 5.3:	-55 °C			40	μΑ	
		"Minimum and maximum cathode	25 °C			40		
		current"	125 °C			40		
	Average temperature coefficient	I _k = 100 μA	-55 °C to 125 °C		5			
ΔV _k /ΔT	<u>Vkmax – Vkmin</u> 180°C x Vk(25°C) × 10 ⁶	I _k = 10 mA	-55 °C to 125 °C		5		ppm/°C	
			-55 °C		0.19		mV	
	Average reverse breakdown voltage change vs. operating current change	$I_{kmin} \le I_k \le 1 \text{ mA}$	25 °C		0.2			
ΔV _k vs.			125 °C		0.22			
Δl _k		1 mA ≤ Ik ≤ 12 mA	-55 °C		1.2			
			25 °C		1.5			
			125 °C		1.7			
R _{ka}		$\Delta I_k = I_{kmin}$ to 10 mA	-55 °C		0.12		Ω	
	Equivalent reverse static resistance		25 °C		0.13			
			125 °C		0.2			
Z _{ka}		$I_k = 1 \text{ mA to } 1.1 \text{ mA},$	-55 °C		0.4		Ω	
	Equivalent reverse dynamic impedance	F ≤ 1 kHz, no	25 °C		0.4			
		capacitive load	125 °C		0.5			
Kvhd	Stability in radiation $\frac{ Vk(0rad) - Vk(100krad) }{Vk(0rad)} \times 100$	$I_k = 100 \ \mu A$, total dose = 100 krads, dose rate = 0.01 rad/s	25 °C		0.03		%	
			-55 °C		380		nV/√ Hz	
en	Spectral density voltage noise	l _k = 100 μA, F= 1 kHz	25 °C		440			
			125 °C		490		1	

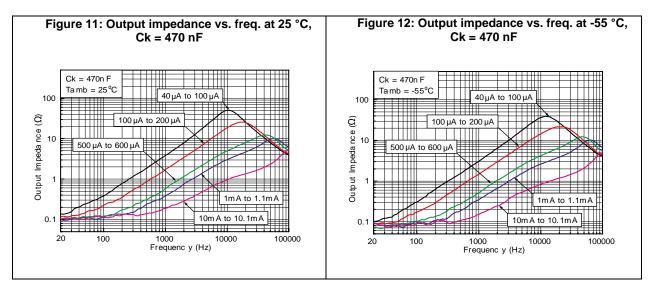



Radia	ions
Table 7: Electrical characteristics after 300 krad (high-dose and low-dose rate), anode to (0 V), Vk referred to anode voltage, Ck = 100 nF, (unless otherwise specified)	GND

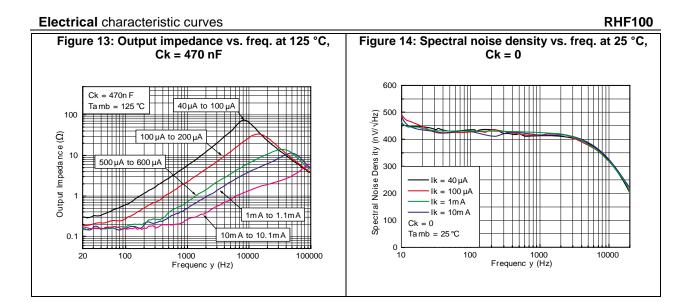
Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit	
DC perfo	rmance							
Vk	Reverse breakdown voltage	I _k = 100 μA	25 °C		1.2		V	
				-4.2		4.2	mV	
ΔV_k	Reverse breakdown voltage tolerance	I _κ = 100 μA	25 °C	- 0.35		0.35	%	
		Refer to Section 5.3: "Minimum and	-55 °C			40	μA	
I _{kmin}	Minimum operating cathode current		25 °C			40		
		maximum cathode current"	125 °C			40		
Δ٧κ/ΔΤ	Average temperature coefficient	I _k = 100 μA	-55 °C to 125 °C		5			
	$\frac{Vkmax - Vkmin}{180^{\circ}C \times Vk(25^{\circ}C)} \times 10^{6}$	I _k = 10 mA	-55 °C to 125 °C		5		ppm/°C	
	Average reverse breakdown voltage change vs. operating current change	$I_{kmin} \leq I_k \leq 1 \text{ mA}$	-55 °C		0.19		mV	
			25 °C		0.2			
ΔV _k vs.			125 °C		0.22			
Δl _k		1 mA ≤ I _k ≤ 12 mA	-55 °C		1.2			
			25 °C		1.5			
			125 °C		1.7			
R _{ka}	Equivalent reverse static resistance	$\Delta I_k = I_{kmin}$ to 10 mA	-55 °C		0.12		Ω	
			25 °C		0.13			
			125 °C		0.2			
Z _{ka}	Equivalent reverse dynamic impedance	$I_k = 1 \text{ mA to } 1.1 \text{ mA},$ F ≤ 1 kHz, no capacitive load	-55 °C		0.4		Ω	
			25 °C		0.4			
			125 °C		0.5			
Kvhd	Stability in radiation $\frac{ Vk(0rad) - Vk(100krad) }{Vk(0rad)} \times 100$	$I_k = 100 \ \mu A$, total dose = 300 krads, dose rate = 0.01 rad/s	25 °C		0.08		%	
			-55 °C		380			
en	Spectral density voltage noise	I _k = 100 μA, F= 1 kHz	25 °C		440		nV/√ Hz	
			125 °C		490		1	

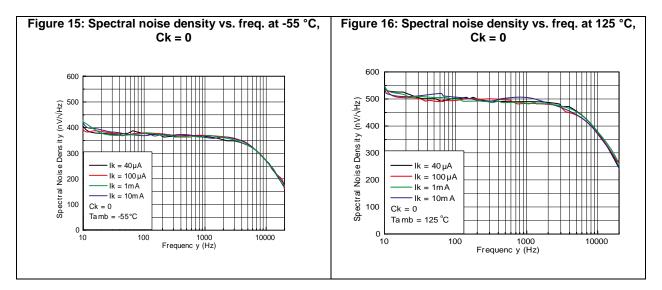


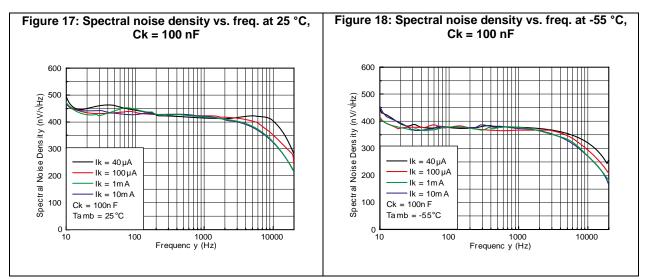




12/32

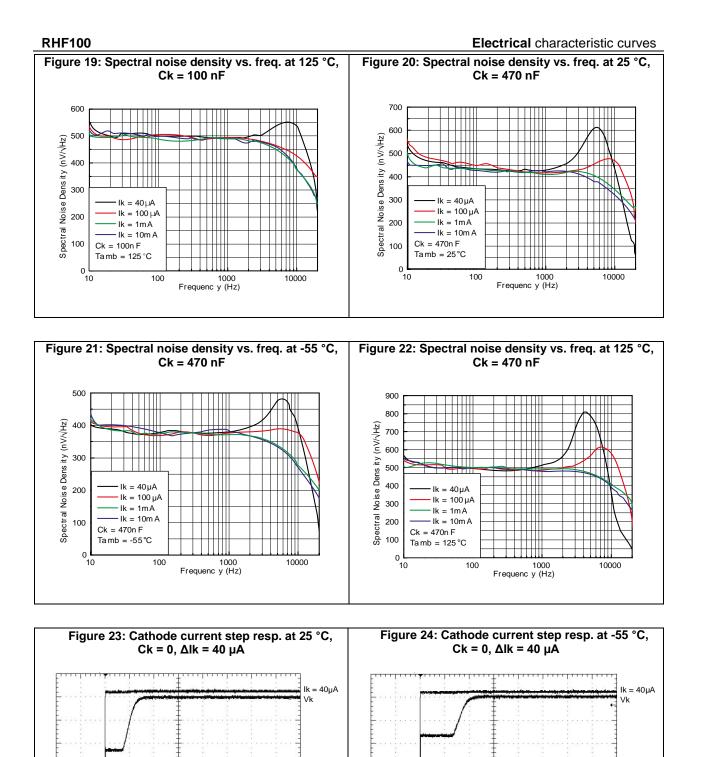





DocID023928 Rev 3

13/32

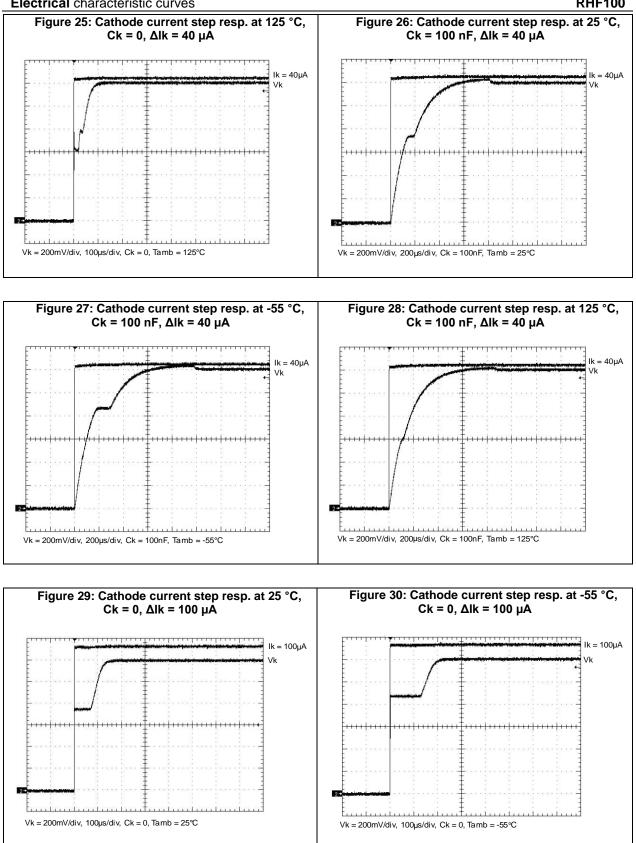
57



14/32

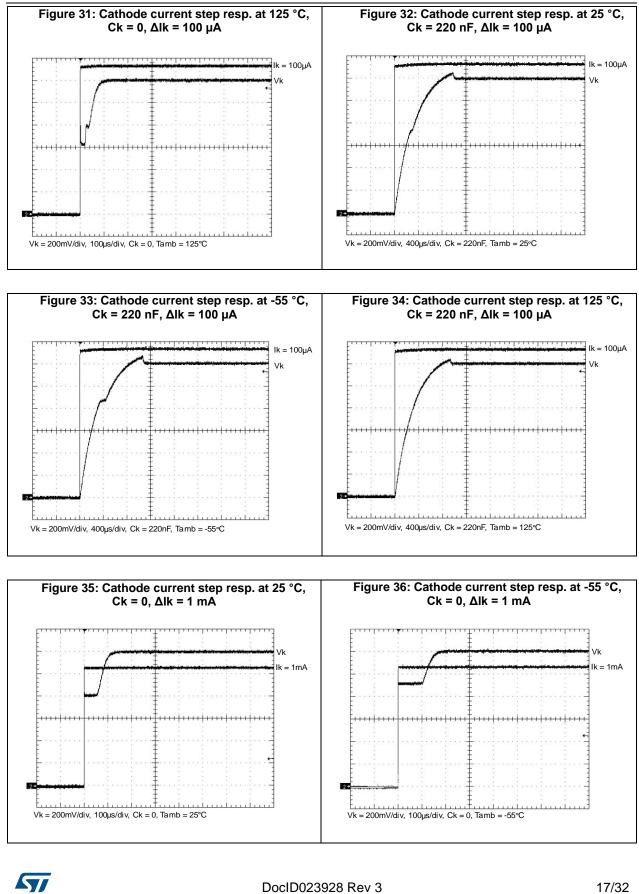
DocID023928 Rev 3

 $Vk = 200mV/di\,v,\ 100\mu s/di\,v,\ Ck = 0,\ Ta\,mb = -55^\circ C$

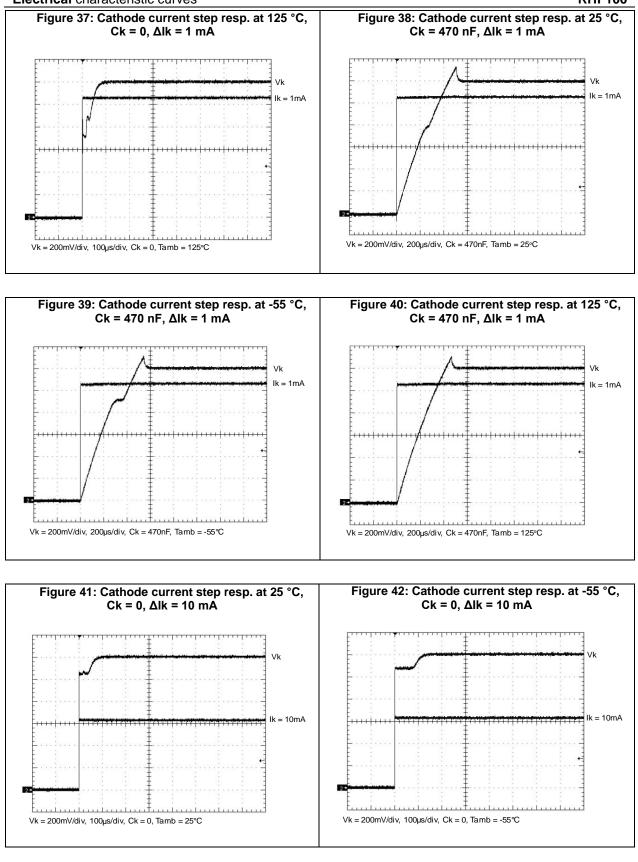

2.

57

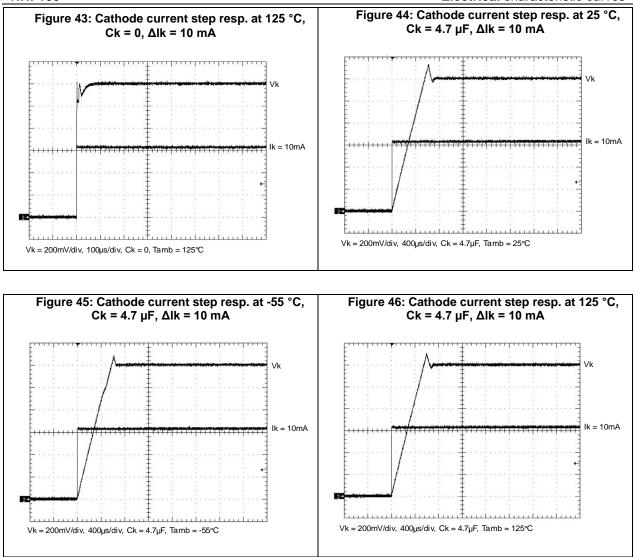
[.....] Vk = 200mV/div, 100μs/div, Ck = 0, Tamb = 25°C

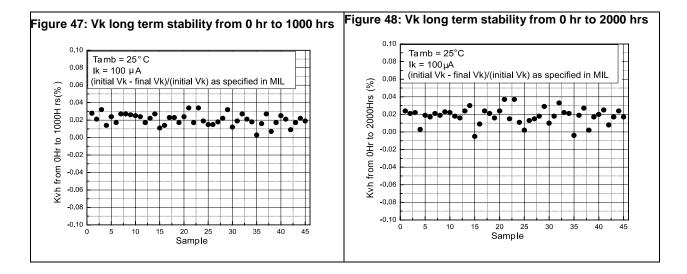

16/32

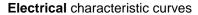
Electrical characteristic curves

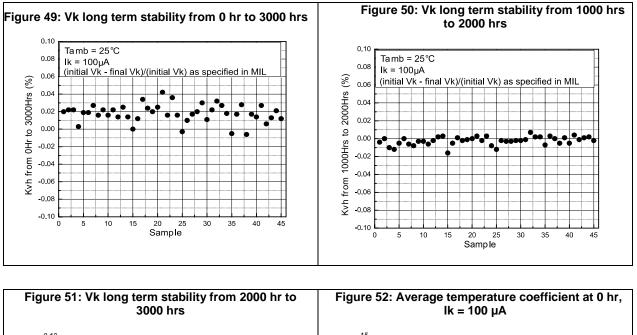

17/32

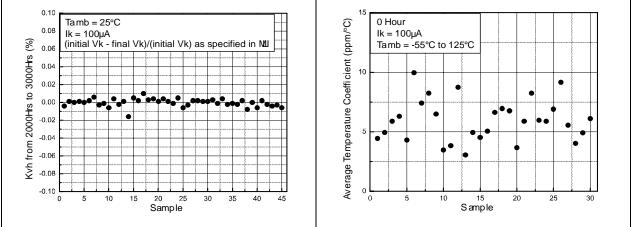
Downloaded from Arrow.com.

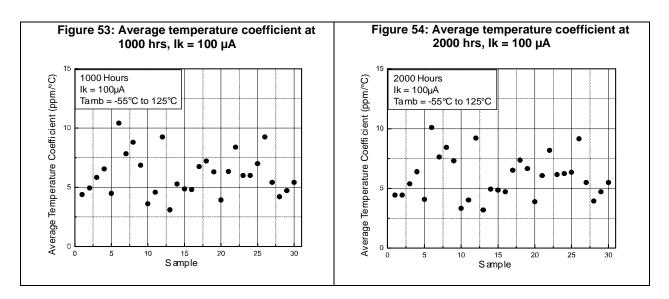




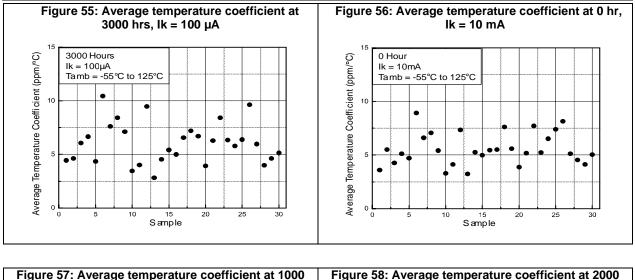

Electrical characteristic curves

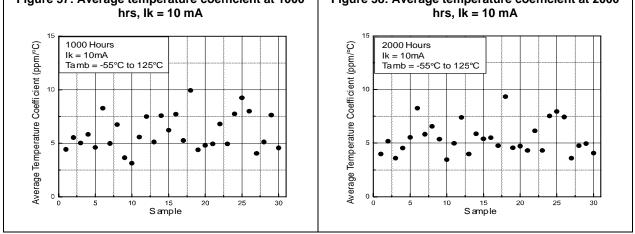


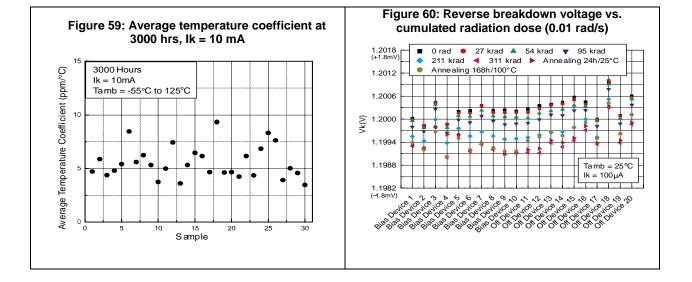

DocID023928 Rev 3

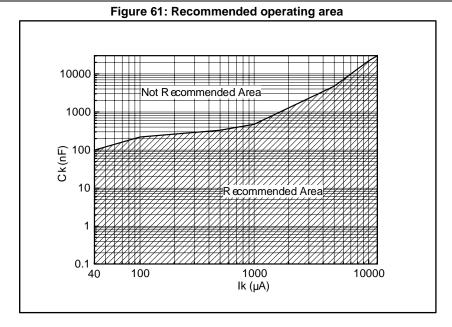

57

RHF100




20/32




Electrical characteristic curves

57

22/32

5 Parameters and implementation

5.1 Introduction

The RHF100 is a 1.2 V, fixed voltage, shunt reference type. Its initial accuracy is ± 0.15 % and the maximum average temperature coefficient is 15 ppm/°C.

From -55 °C to 125 °C, the cathode current capability of the RHF100 ranges from 40 µA up to 12 mA.

Thanks to internal double bonding, the RHF100 has an equivalent output resistance as low as 110 mW. Consequently, the RHF100 has very good load regulation.

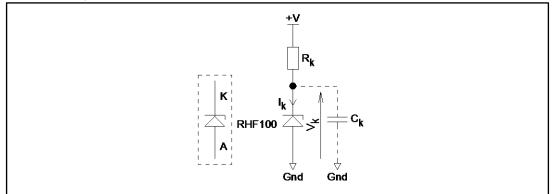


Figure 62: Implementation used for the test and for the characterisation

5.2 Average temperature coefficient

The RHF100 is designed with a second order compensation in temperature. This gives an S-shaped curve for the Vk variation over the temperature range.

For the RHF100, the average temperature coefficient is calculated as shown in *Equation 1*. **Equation 1**

Average temperature coefficient =
$$\frac{V_{kmax} - V_{kmin}}{(T_{max} - T_{min}) \times V_k (25 \degree C)} \times 10^6$$

Where T_{max} = 125 °C and T_{min} = -55 °C.

For each sample, use *Equation 1* and the procedure below:

- Set a cathode current (I_k)
- Measure V_k at I_k with an ambient temperature of 25 °C
- Measure Vk at Ik with the following ambient temperatures: -55 °C, -15 °C, 75 °C, and 125°C.
- For the above five temperature measurements, find the Vk maximum and minimum
- Apply Equation 1

The average temperature coefficient is evaluated during product qualification on the above five temperature measurements and is guaranteed on production tests with three temperature measurements: -55 °C, 25 °C, and 125 °C.

5.3 Minimum and maximum cathode current

5.3.1 Minimum operating cathode current

The minimum operating cathode current ($I_{kmin.}$) is a combination of parameters (such as reference voltage, stability, noise, and process drift) that are taken over the ambient temperature range. For the RHF100, $I_{kmin.}$ is 40 µA.

I_{kmin.} is guaranteed over the ambient temperature range by *Equation 2*.

Equation 2

 $V_{k}(I_{k} = 40 \ \mu A) \ge V_{k}(I_{k} = 100 \ \mu A, 25 \ ^{\circ}C) - 100 \ \mu V$

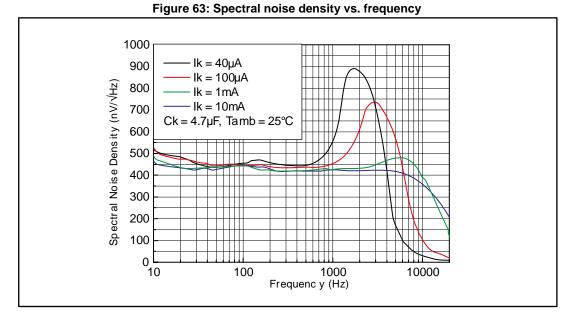
5.3.2 Maximum operating cathode current (lkmax.)

The maximum operating cathode current (I_{kmax}) is limited by the output ballast current capabilities and process drift. For the RHF100, I_{kmax} is 12 mA.

 I_{kmax} is guarantee by the ΔV_k vs. ΔI_k parameter (see *Table 4: "Anode connected to GND (0 V), Vk referred to anode voltage, Ck = 100 nF, unless otherwise specified"*) and by *Equation 3* (at $T_{amb} = 25 \text{ °C}$).

Equation 3

$$V_k(I_k = 12 \text{ mA}) \le V_k(I_k = 100 \ \mu\text{A}, 25 \ ^\circ\text{C}) + 3 \ \text{mV}$$


5.4 Capacitive load considerations

The RHF100 is designed to be stable with any capacitive load (C_k) over the cathode current range (40 μ A to 12 mA) and ambient temperature range (-55 °C to 125 °C).

If an oscillation amplitude less than 2 mVrms is acceptable, this device can be considered usable with any capacitive load.

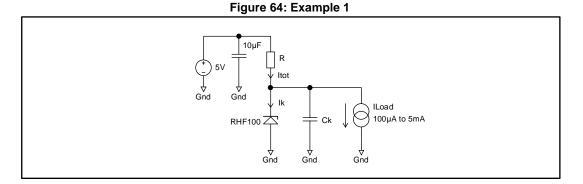

However, if no oscillation is required, it is important to follow the recommendations given in *Figure 60: "Reverse breakdown voltage vs. cumulated radiation dose (0.01 rad/s)"*.

Figure 63: "Spectral noise density vs. frequency" shows the spectral noise density measurements vs. frequency. For example, with a capacitive load of 4.7 μ F and I_k = 40 μ A, there is a noise peak at about 1800 Hz. For the reverse breakdown voltage (V_k), this peaking corresponds to a micro-oscillation, with jitter, centered at 1800 Hz.

5.4.1 Design example with a variable output current load

Figure 64: "Example 1" shows how the output current load can vary from 100 μ A to 5 mA. To bias the RHF100 correctly, we have to take into consideration that the cathode current varies in the opposite way to the load current.

In *Figure 64: "Example 1"*, for a current load of 5 mA, the RHF100 has to be biased by 40 μ A minimum.

If $I_k = 100 \ \mu$ A, $I_{tot} = 5.1 \ m$ A and the bias resistor value R can be calculated using *Equation* 4.

Equation 4

$$R = (5 V - 1.2 V) / 5.1 mA$$

In this case, R = 745 Ω . The closest normalized value is 750 Ω .

When current load = 5 mA, I_k = (5 V - 1.2 V)/750 - 5 mA = 66 μA which is higher than $I_{kmin.}$ = 40 $\mu A.$

When the current load = 100 μ A, I_k = (5 V - 1.2 V)/750 - 100 μ A = 4.96 mA which is lower than I_{kmax.} = 12 mA.

Referring to *Figure 60: "Reverse breakdown voltage vs. cumulated radiation dose (0.01 rad/s)"*, the decoupling capacitor must not be higher than 150 nF ($I_{k min.} = 66 \mu A$).

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

6.1 Ceramic Flat-10 package information

	Dimensions						
Ref.		Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.26	2.44	2.62	0.089	0.096	0.103	
b	0.38	0.43	0.48	0.015	0.017	0.019	
С	0.10	0.13	0.15	0.004	0.005	0.006	
D	6.35	6.48	6.60	0.250	0.255	0.260	
E	6.35	6.48	6.60	0.250	0.255	0.260	
E2	4.32	4.45	4.58	0.170	0.175	0.180	
E3	0.88	1.01	1.14	0.035	0.040	0.045	
е		1.27			0.050		
L	6.35		9.40	0.250		0.370	
Q	0.66	0.79	0.92	0.026	0.031	0.036	
S1	0.16	0.48	0.81	0.006	0.019	0.032	
N	10						

Table 8: Ceramic Flat-10 package mecha	nical data

The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package. Connecting unused pins or the metal lid to ground or V_{CC} does not affect the electrical characteristics.

7 Ordering information

Table 9: Order codes					
Order code	Description	Temp. range	Package	Marking ⁽¹⁾	Packing
RHF100K1	Engineering model			RHF100K1	
RHF100K01V	QML-V flight	-55 °C to 125 °C	Flat-10	5962F1422501VX C	Strip pack

Notes:

⁽¹⁾Specific marking only. Complete marking includes the following: SMD pin (for QML flight only), ST logo, Date code (date the package was sealed) in YYWWA (year, week, and lot index of week), QML logo (Q or V), Country of origin (FR = France)

Contact your ST sales office for information regarding the specific conditions for products in die form and QML-Q versions.

8 Other information

8.1 Date code

The date code is structured as shown below:

- Engineering model: EM xyywwz
- QML flight model: FM yywwz

Where:

x (EM only): 3, assembly location Rennes (France)

yy: last two digits year

ww: week digits

z: lot index in the week

8.2 Documentation

Table 10: Documentation provided for QMLV flight

Quality level	Documentation
Engineering model	_
QML-V flight	 Certificate of conformance with Group C (reliability test) and group D (package qualification) reference Precap report PIND⁽¹⁾ test summary (test method conformance certificate) SEM⁽²⁾ report X-ray report Screening summary Failed component list (list of components that have failed during screening) Group A summary (QCI⁽³⁾ electrical test) Group B summary (QCI mechanical test) Group E (QCI wafer lot radiation test)

Notes:

 $^{(1)}PIND$ = particle impact noise detection

 $^{(2)}SEM$ = scanning electron microscope

 $^{(3)}$ QCI = quality conformance inspection

9 Revision history

Table 11: Document revision history

Date	Revision	Changes
06-Dec-2013	1	Initial release
19-Sep-2014	2	Added new Features to first page. Table 1: "Device summary" and Table 9: "Order codes": added SMD reference and flight model marking; removed footnote describing RHF100K01V as not being in full production. Updated 100 krad with 300 krad except in Table 6 Table 4: added ΔVk for 3000 hrs Table 5: updated for 300 krad Table 6: modified Kvhd Added Table 7 Added Figure 60
06-Nov-2017	3	Added comment: (initial Vk - final Vk)/(initial Vk). as specified in MIL" from Figure 47 to 51.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

