

Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

/!\ REMINDERS

Product Information in this Catalog

Product information in this catalog is as of October 2019. All of the contents specified herein and production status of the products listed in this catalog are subject to change without notice due to technical improvement of our products, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual product specification sheets.

Approval of Product Specifications

Please contact TAIYO YUDEN for further details of product specifications as the individual product specification sheets are available. When using our products, please be sure to approve our product specifications or make a written agreement on the product specification with TAIYO YUDEN in advance.

Pre-Evaluation in the Actual Equipment and Conditions

Please conduct validation and verification of our products in actual conditions of mounting and operating environment before using our products.

Limited Application

1. Equipment Intended for Use

The products listed in this catalog are intended for generalpurpose and standard use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment including, without limitation, mobile phone, and PC) and other equipment specified in this catalog or the individual product specification sheets.

TAIYO YUDEN has the line-up of the products intended for use in automotive electronic equipment, telecommunications infrastructure and industrial equipment, or medical devices classified as GHTF Classes A to C (Japan Classes I to III). Therefore, when using our products for these equipment, please check available applications specified in this catalog or the individual product specification sheets and use the corresponding products.

2. Equipment Requiring Inquiry

Please be sure to contact TAIYO YUDEN for further information before using the products listed in this catalog for the following equipment (excluding intended equipment as specified in this catalog or the individual product specification sheets) which may cause loss of human life, bodily injury, serious property damage and/or serious public impact due to a failure or defect of the products and/or malfunction attributed thereto.

- (1) Transportation equipment (automotive powertrain control system, train control system, and ship control system, etc.)
- (2) Traffic signal equipment
- (3) Disaster prevention equipment, crime prevention equipment
- (4) Medical devices classified as GHTF Class C (Japan Class III)
- (5) Highly public information network equipment, dataprocessing equipment (telephone exchange, and base station, etc.)
- (6) Any other equipment requiring high levels of quality and/or reliability equal to the equipment listed above

3. Equipment Prohibited for Use

Please do not incorporate our products into the following equipment requiring extremely high levels of safety and/or reliability.

- (1) Aerospace equipment (artificial satellite, rocket, etc.)
- (2) Aviation equipment *1
- (3) Medical devices classified as GHTF Class D (Japan Class IV), implantable medical devices *2

- (4) Power generation control equipment (nuclear power, hydroelectric power, thermal power plant control system, etc.)
- (5) Undersea equipment (submarine repeating equipment, underwater work equipment, etc.)
- (6) Military equipment
- (7) Any other equipment requiring extremely high levels of safety and/or reliability equal to the equipment listed above

*Notes:

- 1. There is a possibility that our products can be used only for aviation equipment that does not directly affect the safe operation of aircraft (e.g., in-flight entertainment, cabin light, electric seat, cooking equipment) if such use meets requirements specified separately by TAIYO YUDEN. Please be sure to contact TAIYO YUDEN for further information before using our products for such aviation equipment.
- Implantable medical devices contain not only internal unit which is implanted in a body, but also external unit which is connected to the internal unit.

4. Limitation of Liability

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment that is not intended for use by TAIYO YUDEN, or any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

Safety Design

When using our products for high safety and/or reliability-required equipment or circuits, please fully perform safety and/or reliability evaluation. In addition, please install (i) systems equipped with a protection circuit and a protection device and/or (ii) systems equipped with a redundant circuit or other system to prevent an unsafe status in the event of a single fault for a failsafe design to ensure safety.

Intellectual Property Rights

Information contained in this catalog is intended to convey examples of typical performances and/or applications of our products and is not intended to make any warranty with respect to the intellectual property rights or any other related rights of TAIYO YUDEN or any third parties nor grant any license under such rights.

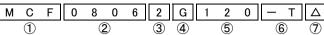
Limited Warranty

Please note that the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a failure or defect in our products. Notwithstanding the foregoing, if there is a written agreement (e.g., supply and purchase agreement, quality assurance agreement) signed by TAIYO YUDEN and your company, TAIYO YUDEN will warrant our products in accordance with such agreement

■ TAIYO YUDEN's Official Sales Channel

The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.

Caution for Export


Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER COMMON MODE CHOKE COILS(MC SERIES F TYPE)

■PARTS NUMBER

* Operating Temp.:-40~+85°C

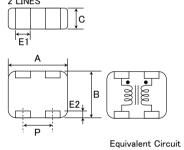
М	С	F	0	8	0	6	2	G	1	2	0	_	Т	Δ
	1			2	2)		3	4		⑤		(3)	7

△=Blank space

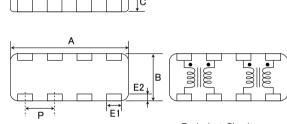
(①Series name	
Ī	Code	Series name
	MCF	Multilayer common mode choke coil

②Dimensions							
Code	Dimensions[mm]						
0605	0.65 × 0.50						
0806	0.85 × 0.65						
1210	1.25 × 1.0						
2010	2.0 × 1.0						

3No. of Lines	
Code	No. of Lines
2	2 lines
4	4 lines


4)Material								
Code	Material							
G	D.C. I.							
E	Refer to impedance curves for material differences							
Н	Tor material differences							

5Nominal common impedance Nominal common impedance [Ω] (example) 120 12 900 90


6)Packaging								
Code	Packaging							
-т	Taping							

7Internal code	
Code	Internal code
Δ	Standard

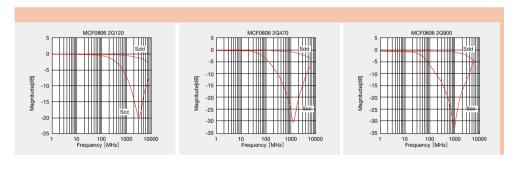
STANDARD EXTERNAL DIMENSIONS / STANDARD QUANTITY / EQUIVALENT CIRCUIT 2 LINES 4 LINES

Equivalent Circuit •No polarity

Туре	А	В	С	E1	E2	Р	Standard quantity [pcs] Taping
MCF0605	0.65 ± 0.05	0.50 ± 0.05	0.30 ± 0.05	0.15±0.1	0.12±0.1	0.40 ± 0.10	15000
	(0.026 ± 0.002)	(0.020 ± 0.002)	(0.012 ± 0.002)	(0.006 ± 0.004)	(0.005 ± 0.004)	(0.016 ± 0.004)	10000
MCF0806	0.85 ± 0.05	0.65 ± 0.05	0.40 ± 0.05	0.27±0.1	0.2 +0.05/-0.1	0.50 ± 0.10	10000
MCF0000	(0.033 ± 0.002)	(0.026 ± 0.002)	(0.016 ± 0.002)	(0.011 ± 0.004)	(0.008 +0.002/-0.004)	(0.020 ± 0.004)	10000
MCF1210	1.0±0.15	1.25±0.15	0.55 ± 0.1	0.3±0.1	0.2 ± 0.1	0.55 ± 0.10	5000
MCF1210	(0.039 ± 0.006)	(0.049 ± 0.006)	(0.022 ± 0.004)	(0.012 ± 0.004)	(0.008 ± 0.004)	(0.022 ± 0.004)	3000
MCF2010	2.0±0.15	1.0±0.15	0.45±0.1	0.25 +0.15/-0.1	0.25±0.15	0.50±0.10	4000
MCF2010	(0.079 ± 0.006)	(0.039 ± 0.006)	(0.018 ± 0.004)	(0.010 +0.006/-0.004)	(0.010 ± 0.006)	(0.020 ± 0.004)	4000

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).


MCF0605 type Rated voltage [V] Insulation resistance $[M\Omega]$ (min.) DC Resistance [Ω] (max.) Rated current [A] (max.) Common mode impedance $\left[\ \Omega \ \right]$ Measuring frequency [MHz] Parts number EHS No. of Lines MCF0605 2G120-T RoHS 0.05 100 12±5 100 2.5 MCF0605 2G350-T RoHS 35±20% 100 5.0 0.05 100 MCF0605 2E900-T RoHS 90±20% 3.9 0.05 100

●MCF0806 type									
Parts number	EHS	No. of Lines	Common mode impedance $\left[\Omega\right]$	Measuring frequency [MHz]	DC Resistance [Ω] (max.)	Rated current [A] (max.)	Rated voltage [V]	Insulation resistance [MΩ] (min.)	
MCF0806 2G120-T	RoHS	2	12±5	100	2.5	0.13	5	100	
MCF0806 2G470-T	RoHS	2	47±20%	100	4.0	0.10	5	100	
MCF0806 2G900-T	RoHS	2	90±20%	100	5.0	0.10	5	100	

●MCF1210 type								
Parts number	EHS	No. of Lines	Common mode impedance $\left[\ \Omega \ \right]$	Measuring frequency [MHz]	DC Resistance [Ω] (max.)	Rated current [A] (max.)	Rated voltage [V]	Insulation resistance $[M\Omega]$ (min.)
MCF1210 2G400-T	RoHS	2	40±25%	100	2.5	0.10	5	100
MCF1210 2G900-T	RoHS	2	90±25%	100	4.5	0.10	5	100
MCF1210 2H500-T	RoHS	2	50±25%	100	1.5	0.16	5	100
MCF1210 2H900-T	RoHS	2	90±20%	100	2.5	0.15	5	100

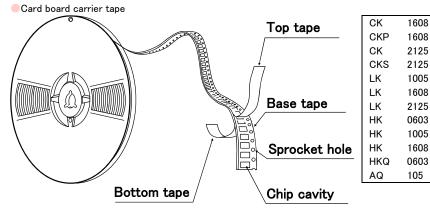
MCF2010 type								
Parts number	EHS	No. of Lines	Common mode impedance $\left[\ \Omega \ \right]$	Measuring frequency [MHz]	DC Resistance [Ω](max.)	Rated current [A] (max.)	Rated voltage [V]	Insulation resistance $[M\Omega]$ (min.)
MCF2010 4G900-T	RoHS	4	90±25%	100	4.5	0.10	5	100
MCF2010 4H900-T	RoHS	4	90±20%	100	3.0	0.10	5	100

■ ELECTRICAL CHARACTERISTICS

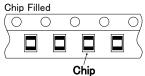
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

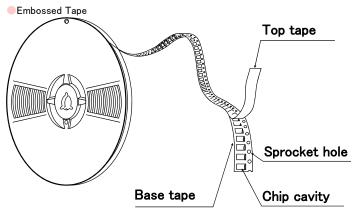
Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOILTM MC series)

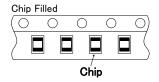

PACKAGING

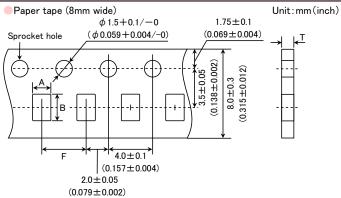
①Minimum Quantity


Tape & Reel Packaging				
Туре	Thickness	Standard Qu	uantity [pcs]	
туре	mm(inch)	Paper Tape	Embossed Tape	
CK1608 (0603)	0.8 (0.031)	4000	_	
CK2125 (0805)	0.85 (0.033)	4000	_	
GRZ123 (0003)	1.25 (0.049)	_	2000	
CK5313E(000E)	0.85(0.033)	4000	_	
CKS2125 (0805)	1.25 (0.049)	_	2000	
CKP1608 (0603)	0.8 (0.031)	4000	_	
CKP2012 (0805)	0.9 (0.035)	_	3000	
CKP2016 (0806)	0.9 (0.035)	_	3000	
	0.7 (0.028)	_	3000	
CKP2520 (1008)	0.9 (0.035)	_	3000	
	1.1 (0.043)	_	2000	
LK1005(0402)	0.5 (0.020)	10000	_	
LK1608 (0603)	0.8 (0.031)	4000	_	
11(0105(0005)	0.85 (0.033)	4000	_	
LK2125(0805)	1.25(0.049)	_	2000	
HK0603(0201)	0.3 (0.012)	15000	_	
HK1005(0402)	0.5 (0.020)	10000	_	
HK1608(0603)	0.8 (0.031)	4000	_	
	0.85 (0.033)	_	4000	
HK2125(0805)	1.0 (0.039)	_	3000	
HKQ0603S (0201)	0.3 (0.012)	15000	_	
HKQ0603U(0201)	0.3 (0.012)	15000	_	
AQ105(0402)	0.5 (0.020)	10000	_	
BK0603(0201)	0.3 (0.012)	15000	_	
BK1005 (0402)	0.5 (0.020)	10000	_	
BKH0603(0201)	0.3 (0.012)	15000	_	
BKH1005 (0402)	0.5 (0.020)	10000	_	
BK1608 (0603)	0.8 (0.031)	4000	_	
DI(1000 (0000)	0.85 (0.033)	4000	_	
BK2125 (0805)	1.25 (0.049)	-	2000	
BK2010(0804)	0.45 (0.018)	4000		
BK3216(1206)	0.8 (0.031)	-	4000	
BKP0603 (0201)	0.3 (0.012)	15000	4000	
BKP1005 (0402)	0.5 (0.020)	10000	_	
BKP1608 (0603)	0.8 (0.031)	4000	_	
BKP2125 (0805)	0.85 (0.033)	4000	_	
MCF0605 (0202)	0.3 (0.012)	15000	_	
MCF0806 (0302)	0.4 (0.016)	13000	10000	
			5000	
MCF1210 (0504)	0.55(0.022)		+	
MCF2010(0804)	0.45(0.018)	10000	4000	
MCEE1005 (0402)	0.55(0.022)	10000		
MCEK1210(0504)	0.5 (0.020)	5000	-	
MCFK1608 (0603)	0.6 (0.024)	4000	-	
MCFE1608 (0603)	0.65(0.026)	4000		
MCHK1608(0603)	0.8 (0.031)	4000	-	
MCKK1608 (0603)	1.0 (0.039)	4000	3000	
MCHK2012 (0806)	0.8 (0.031)	4000		
MCKK2012 (0805)	1.0 (0.039)	-	3000	


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

②Taping material

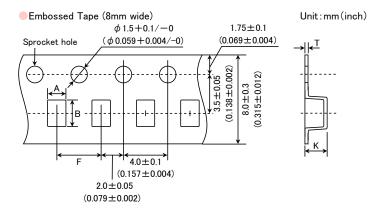

BK	0603
BK	1005
BK	1608
BK	2125
BK	2010
BKP	0603
BKP	1005
BKP	1608
BKP	2125
BKH	0603
BKH	1005
MCF	0605
MC	1005
MC	1210
MC	1608
MC	2012



CK	2125	
CKS	2125	
CKF	2012	
CKF	2016	
CKF	2520	
LK	2125	
HK	2125	

BK	2125	
BK	3216	
MCF	0806	
MCF	1210	
MCF	2010	
MC	1608	
MC	2012	

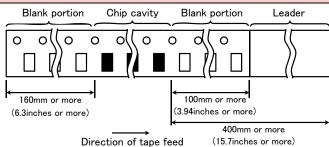
3Taping Dimensions



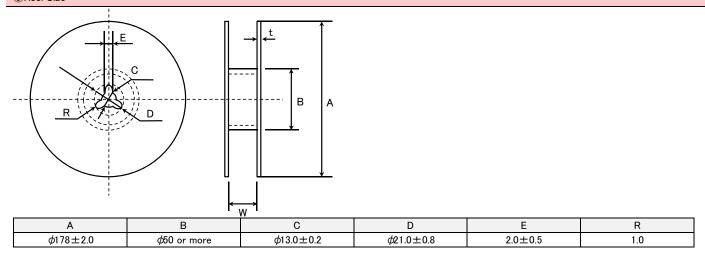
This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Туре	Thickness	·	cavity	Insertion Pitch	Tape Thickness
. , , , ,	mm(inch)	Α	В	F	Т
CK1608(0603)	0.8 (0.031)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
01(1000(0000)	0.0 (0.001)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
CK2125(0805)	0.85(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
OK2123 (0003)	0.00 (0.000)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
CKS2125(0805)	0.85(0.033)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
01(32123 (0003)	0.00 (0.000)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
CKP1608(0603)	0.8 (0.031)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
OKF 1000 (0003)	0.0 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
LK1005(0402)	0.5 (0.020)	0.65 ± 0.1	1.15±0.1	2.0±0.05	0.8max
LK1003 (0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079±0.002)	(0.031max)
LK1608(0603)	0.8 (0.031)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
LI(1000 (0000)	0.0 (0.001)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
LK2125 (0805)	0.85(0.033)	1.5±0.2	2.3 ± 0.2	4.0±0.1	1.1max
LN2123(0003)	0.65 (0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
HK0603(0201)	0.3 (0.012)	0.40 ± 0.06	0.70±0.06	2.0±0.05	0.45max
HKU003 (UZU1)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
HK1005(0402)	0.5 (0.020)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
HK1003 (0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
HK1608(0603)	0.8 (0.031)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
111(1000(0003)	0.0 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157±0.004)	(0.043max)
HKU06036 (0304)	0.2 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ0603S(0201)	0.3 (0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079±0.002)	(0.018max)
HKQ0603U(0201)	0.3 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
HKQ00030 (0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
A O 1 0 E (0 4 0 0)	0 F (0 000)	0.75±0.1	1.15±0.1	2.0±0.05	0.8max
AQ105(0402)	0.5 (0.020)	(0.030 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
DV0602 (0201)	0.2 (0.012)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BK0603(0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
DV1005 (0402)	0.5 (0.020)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BK1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
DK1600 (0602)	0.0 (0.021)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
BK1608(0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
DK010E (000E)	0.05(0.000)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
BK2125(0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.043max)
DK0010(0004)	0.45(0.010)	1.2±0.1	2.17±0.1	4.0±0.1	0.8max
BK2010(0804)	0.45 (0.018)	(0.047 ± 0.004)	(0.085 ± 0.004)	(0.157 ± 0.004)	(0.031max)
DVD0000 (0001)	0.0 (0.010)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BKP0603 (0201)	0.3 (0.012)	(0.016 ± 0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
DI/D1005 (0100)	0.5 (0.000)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BKP1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079 ± 0.002)	(0.031max)
DI(D1000 (0000)	0.0 (0.004)	1.0±0.2	1.8±0.2	4.0±0.1	1.1max
BKP1608 (0603)	0.8 (0.031)	(0.039 ± 0.008)	(0.071 ± 0.008)	(0.157 ± 0.004)	(0.043max)
DI/D010E (000E)	0.05 (0.000)	1.5±0.2	2.3±0.2	4.0±0.1	1.1max
BKP2125 (0805)	0.85(0.033)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157±0.004)	(0.043max)
DI(10000 (0004)	0.0 (0.0:5)	0.40±0.06	0.70±0.06	2.0±0.05	0.45max
BKH0603(0201)	0.3 (0.012)	(0.016±0.002)	(0.028 ± 0.002)	(0.079 ± 0.002)	(0.018max)
DI(11400E (0.400)	0.5 (0.055)	0.65±0.1	1.15±0.1	2.0±0.05	0.8max
BKH1005(0402)	0.5 (0.020)	(0.026 ± 0.004)	(0.045 ± 0.004)	(0.079±0.002)	(0.031max)
MOE000E (0000)	00 (0010)	0.62±0.03	0.77±0.03	2.0±0.05	0.45max
MCF0605 (0202)	0.3 (0.012)	(0.024 ± 0.001)	(0.030 ± 0.001)	(0.079 ± 0.002)	(0.018max)
MOEI(4000 (0000)	0.0 (0.001)	1.1±0.05	1.9±0.05	4.0±0.1	0.72max
MCFK1608 (0603)	0.6 (0.024)	(0.043 ± 0.002)	(0.075 ± 0.002)	(0.157±0.004)	(0.028max)
10551005/0105	0.55/0.0513	0.8±0.05	1.3±0.05	2.0±0.05	0.64max
MCEE1005 (0402)	0.55(0.021)	(0.031 ± 0.002)	(0.051 ± 0.002)	(0.079±0.002)	(0.025max)
105(4045/555)	0.5 (2.2)	1.3±0.1	1.55±0.1	4.0±0.1	0.64max
MCEK1210 (0504)	0.5 (0.020)	(0.051 ± 0.004)	(0.061 ± 0.004)	(0.157±0.004)	(0.025max)
		1.1±0.05	1.9±0.05	4.0±0.1	0.72max
MCFK1608 (0603)	0.6 (0.024)	(0.043 ± 0.002)	(0.075 ± 0.002)	(0.157 ± 0.004)	(0.028max)
		1.1±0.05	1.9±0.05	4.0±0.1	0.72max
MCFE1608 (0603)	0.65(0.026)	(0.043 ± 0.002)	(0.075±0.002)	(0.157±0.004)	(0.028max)
		1.2±0.05	2.0±0.05	4.0±0.1	0.9max
MCHK1608 (0603)	0.8 (0.031)	(0.047 ± 0.002)	(0.079 ± 0.002)	(0.157±0.004)	(0.035max)
MCHK2012 (0805)	0.8 (0.031)	1.65 ± 0.1	2.4 ± 0.1	4.0±0.1	0.9max
		(0.065 ± 0.004)	(0.094 ± 0.004)	(0.157 ± 0.004)	(0.035max)

 $\mathsf{Unit}:\mathsf{mm}(\mathsf{inch})$


This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

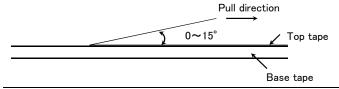
Thickness		Chip cavity		Insertion Pitch	Tape Thickness		
Туре	mm(inch)	Α	В	F	K	Т	
CK2125(0805)	1.25(0.049)	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
CK2123(0803)	1.25(0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
OKC010E (000E)	1.05(0.040)	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
CKS2125 (0805)	1.25(0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
OKD3013 (000E)	0.9 (0.035)	1.55±0.2	2.3±0.2	4.0±0.1	1.3	0.3	
CKP2012(0805)	0.9 (0.035)	(0.061 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.051)	(0.012)	
CKD3018 (0008)	0.9 (0.035)	1.8±0.1	2.2±0.1	4.0±0.1	1.3	0.25	
CKP2016 (0806)	0.9 (0.035)	(0.071 ± 0.004)	(0.087 ± 0.004)	(0.157 ± 0.004)	(0.051)	(0.01)	
	0.7 (0.000)				1.4		
	0.7 (0.028)				(0.055)		
	0.0 (0.005)				1.4		
01/00500 (1000)	0.9 (0.035)	2.3±0.1	2.8±0.1	4.0±0.1	(0.055)	0.3	
CKP2520(1008)	1.1 (0.040)	(0.091 ± 0.004)	(0.110 ± 0.004)	(0.157 ± 0.004)	1.7	(0.012)	
	1.1 (0.043)				(0.067)		
	1.1 (0.010)				1.7		
	1.1 (0.043)				(0.067)		
11(0105(0005)	1.05(0.040)	1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
LK2125 (0805)	1.25 (0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
	0.05 (0.000)				1.5		
LIK010E (000E)	0.85 (0.033)	1.5±0.2	2.3±0.2	4.0±0.1	(0.059)	0.3	
HK2125(0805)		(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	2.0	(0.012)	
	1.0 (0.039)		,	,	(0.079)	, ,	
		1.5±0.2	2.3±0.2	4.0±0.1	2.0	0.3	
BK2125 (0805)	1.25 (0.049)	(0.059 ± 0.008)	(0.091 ± 0.008)	(0.157 ± 0.004)	(0.079)	(0.012)	
	()	1.9±0.1	3.5±0.1	4.0±0.1	1.4	0.3	
BK3216(1206)	0.8 (0.031)	(0.075 ± 0.004)	(0.138 ± 0.004)	(0.157 ± 0.004)	(0.055)	(0.012)	
		0.75±0.05	0.95±0.05	2.0±0.05	0.55	0.3	
MCF0806 (0302)	0.4 (0.016)	(0.030 ± 0.002)	(0.037 ± 0.002)	(0.079 ± 0.002)	(0.022)	(0.012)	
	()	1.15±0.05	1.40±0.05	4.0±0.1	0.65	0.3	
MCF1210 (0504)	0.55 (0.022)	(0.045 ± 0.002)	(0.055 ± 0.002)	(0.157 ± 0.004)	(0.026)	(0.012)	
	0.45(0.040)	1.1±0.1	2.3±0.1	4.0±0.1	0.85	0.3	
MCF2010 (0804)	0.45 (0.018)	(0.043 ± 0.004)	(0.091 ± 0.004)	(0.157 ± 0.004)	(0.033)	(0.012)	
		1.1±0.1	1.95±0.1	4.0±0.1	1.4	0.25	
MCKK1608 (0603)	1.0 (0.039)	(0.043 ± 0.004)	(±0.004)	(0.157 ± 0.004)	(0.055)	(0.01)	
		1.55±0.1	2.35±0.1	4.0±0.1	1.35	0.25	
MCKK2012 (0805)	1.0 (0.039)	(0.061 ± 0.004)	(0.093 ± 0.004)	(0.157 ± 0.004)	(0.053)	(0.010)	
	l	(0.001 = 0.001)	(0.000 = 0.00 1)	(0.107 = 0.0017	1	m(inch)	


Unit: mm(inch)

4LEADER AND BLANK PORTION

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

⑤Reel Size



	t	W
4mm width tape	1.5max.	5±1.0
8mm width tape	2.5max.	10±1.5

(Unit:mm)

6Top tape strength

The top tape requires a peel-off force of $0.1 \sim 0.7 N$ in the direction of the arrow as illustrated below.

Multilayer chip inductors

Multilayer chip inductors for high frequency, Multilayer chip bead inductors

Multilayer common mode choke coils (MC series F type)

Metal Multilayer Chip Power Inductors (MCOIL™ MC series)

RELIABILITY DATA

CK se	series series series series series series series series 03, HK1005 08, HK2125 1603 15 ILTM MC series	$-55 \sim + 125^{\circ}C$ $-55 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-55 \sim + 125^{\circ}C$ $-40 \sim + 125^{\circ}C \text{ (Including self-generated heat)}$ $-55 \sim + 125^{\circ}C$ $-55 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$ $-40 \sim + 85^{\circ}C$
BKP s MCF s CK se CKS s CKS s CKS s CKP s LK se HK060 HK160 HK160 MCOI	series series series series series series series 03, HK1005 08, HK2125 0603 05 ILTM MC series	$-40 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
Specified Value CKS s	series eries series series series 03, HK1005 08, HK2125 1603 15 ILTM MC series eries series	$-40 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CK se	eries series series 03, HK1005 08, HK2125 1603 15 1LTM MC series 1818 1818 1818 1818 1818 1818 1818 18	$-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CKS s	series series 03, HK1005 08, HK2125 0603 5 ILTM MC series eries series series series series series series series series	$-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
CKP s	series ories ories ories ories ories ories ories folio3 folio folio	$-55 \sim +125^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$ $-55 \sim +125^{\circ}\text{C}$ $-40 \sim +125^{\circ}\text{C (Including self-generated heat)}$ $-55 \sim +125^{\circ}\text{C}$ $-55 \sim +85^{\circ}\text{C}$ $-40 \sim +85^{\circ}\text{C}$
HK066 HK166 HKQ0 AQ10 MCOI 2. Storage Temperature Ra BK se BKH s BKP s CK se CKS s CKS s CKS s LK se HK066 HK166 HK166 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	03, HK1005 08, HK2125 1603 15 ILTM MC series Inge Pries Series	-40~+85°C -55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s CKS s	08, HK2125 1603 15 ILTM MC series Inge Pries Series Series Series Series Series Series Series Series Series	-40~+85°C -55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
AQ10 AQ10 AQ10 AQ10 AQ10 AQ10 AQ10 BK se BKH s BKP s CK se CKS s CKS s CKS s LK se HK060 HK161 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	0603 5 IL™ MC series Inge Pries Series Series Series Series Series Series Series Series Series	-55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s CK se CKS s CKS s CKS s CKS s CKS s CKS s BKH 6 HK166 HK166 HK160 AQ10 MCOI	0603 5 IL™ MC series Inge Pries Series Series Series Series Series Series Series Series Series	-55~+125°C -40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
2. Storage Temperature Ra BK se BKH s BKP s CK se CKS s CKS s LK se HK060 HK160 HK160 HK100 AQ10 MCOI 3. Rated Current BK se BKH s BKP s	LTM MC series unge eries series series series series series series series series	-40~+125°C (Including self-generated heat) -55~+125°C -55~+85°C -40~+85°C
2. Storage Temperature Ra BK se BKH s BKP s MCF s CK se CKS s CKS s LK se HK060 HK160 HK100 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	inge eries series series eries series series series series	-55~+125°C -55~+85°C -40~+85°C
BK se BKH s BKP s BKP s MCF s CKS s CKP s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI	eries series series series eries series series series	-55~+85°C -40~+85°C
BK se BKH s BKP s BKP s MCF s CKS s CKP s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI	eries series series series eries series series series	-55~+85°C -40~+85°C
BKH s BKP s MCF s CK se CKS s CKS s CKS s CKS s LK se HK060 HK160 HKQ0 AQ10 MCOI MCOI S Rated Current BK se BKP s MCF	series series series eries series series	-55~+85°C -40~+85°C
BKP s	series series eries series series	-55~+85°C -40~+85°C
MCF s CK se CKS s CKS s CKS s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI S Rated Current BK se BKH s BKP s MCF s MCF s MCF s MCF s MCF s CKS C	series eries series series	-40~+85°C
CK se	eries series series	
CKS s CKP s CKP s CKP s LK se HK060 HK160 HKQ0 AQ10 MCOI S Rated Current BK se BKP s MCF	series series	
CKP s	series	-40~+85°C
LK se HK060 HK160 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF		
HK066 HK166 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	rioc	
HK160 HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF	1109	
HKQ0 AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	03, HK1005	_55~+125°C
AQ10 MCOI 3. Rated Current BK se BKH s BKP s MCF s	08, HK2125	-40~+85°C
3. Rated Current BK se BKH s BKP s MCF s	1603	
3. Rated Current BK se BKH s BKP s	5	00 1 120 0
BK se BKH s BKP s	L [™] MC series	-40~+85°C
BK se BKH s BKP s		
BKH s BKP s MCF s		
BKP s		The temperature of the element is increased within 20°C.
MCF :		The temperature of the element is increased within 40°C
		Refer to each specification.
UN Se		Refer to each specification.
CKS s		The temperature of the element is increased within 20°C.
		The terrespecture of the element is increased within 10°C
Specified Value CKP s		The temperature of the element is increased within 40°C
LK se		The decreasing-rate of inductance value is within 5 %
	03, HK1005	The decreasing water find outside the few waters for the few waters fo
	08, HK2125	The decreasing-rate of inductance value is within 5 %, or the temperature of the element
HKQ0	IDLLS	increased within 20°C
AQ10		
MCOI		Idc1: The decreasing-rate of inductance value is within 30 %

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Impedance	1			
	BK series			
Specified Value	BKH series		Refer to each specification.	
opeomed value	BKP series		Nerel to each specification.	
	MCF series			
	BK0603Series, BKP0603	Series, BKH Series		
	Measuring frequency	: 100±1MHz		
	Measuring equipment	: 4991A(or its ed	quivalent)	
	Measuring jig : 16193A(or its equivalent)		equivalent)	
	BK1005Series, BKP1005	Series ,BKH1005Ser	ries	
	Measuring frequency	: 100±1MHz		
	Measuring equipment	: 4291A(or its ed	quivalent)	
	Measuring jig	: 16192A (or	its equivalent), HW:16193A (or its	
		equivalent)		
Test Methods and	BK1608 • 2125Series, BKF	P1608 • 2125Series		
Remarks	Measuring frequency	: 100±1MHz		
	Measuring equipment	: 4291A(or its ed	quivalent), 4195A (or its equivalent)	
	Measuring jig	: 16192A(or its e	equivalent), HW:16193A(or its equivalent)	
	BK2010 • 3216Series			
	Measuring frequency	: 100±1MHz		
	Measuring equipment	: 4291A(or its equivalent), 4195A(or its equivalent)		
	Measuring jig	: 16192A(or its equivalent)		
	MCF Series			
	Measuring frequency	: 100±1MHz		
Measuring equipment : 4291A(o		: 4291A(or its ed	quivalent)	
5. Inductance				
	CK series			
	CKS series			
	OLCD.			

5. Inductance			
	CK series		
	CKS series		
	CKP series		
	LK series		
Specified Value	HK0603, HK1005		Refer to each specification.
	HK1608, HK2125		
	HKQ0603		
	AQ105		
	MCOIL [™] MC series		
	CK, CKS, LK Series		
	Measuring frequency : Refer to each		n specification.
	Measuring equipment /jig		l294A+16092A(or its equivalent) .+16193A(or its equivalent)
	Measuring current : 047~4.7 μ H		⇒1mArms 、 5.6~33 μH ⇒0.1mArms
	CKP、MCOIL™ MC Series		
	Measuring frequency	: 1MHz	
	Measuring equipment	: 4285A(or its equivalent)	
Test Methods and Remarks	HK0603、HK1005、AQ Series	S	
Remarks	Measuring frequency	: 100MHz	
	Measuring equipment /jig		1991A+16197A(or its equivalent), AQ105⇒4291A+16197A(or its equivalent) 191A+16193A(or its equivalent)
	HK1608、HK2125 Series		
	Measuring frequency	: ~100nH⇒10	00MHz 、120nH~⇒50MHz
	Measuring equipment /jig	: 4291A+1609	2A(or its equivalent)
	HKQ Series		
	Measuring frequency	: 500MHz	
	Measuring equipment /jig	: E4991A+161	97A(or its equivalent)

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Q				
	CK series			
	CKS series	_		
	CKP series			
	LK series			
Specified Value	HK0603, HK1005			
opcomed value	HK1608, HK2125	Refer to each specification.		
	HKQ0603	Note: to each specification.		
	AQ105 MCOIL™ MC series			
		_		
	LK Series			
	Measuring frequency : Refer to each s	·		
	Measuring equipment /jig : 1608,2125⇒429			
		16193A(or its equivalent)		
	Measuring current : $047 \sim 4.7 \mu\text{H} \Rightarrow$	1mArms 、 5.6~33 μH ⇒0.1mArms		
	HK0603, HK1005, AQ Series			
Test Methods and	Measuring frequency : 100MHz			
Remarks	Measuring equipment /jig : HK0603⇒E49	991A+16197A(or its equivalent), AQ105⇒4291A+16197A(or its equivalent)		
	HK1005⇒429	11A+16193A(or its equivalent)		
	HK1608、HK2125 Series			
	Measuring frequency : ~100nH⇒10	00MHz 、120nH~⇒50MHz		
	Measuring equipment /jig : 4291A+1609	2A (or its equivalent)		
	HKQ Series			
	Measuring frequency : 500MHz			
		97A(or its equivalent)		
7. DC Resistance				
7. 50 110010141100	BK series			
	BKH series			
	BKP series			
	MCF series			
	CK series			
	CKS series			
Specified Value	CKP series	Refer to each specification.		
	LK series			
	HK0603, HK1005			
	HK1608, HK2125			
	HKQ0603			
	AQ105			
	MCOIL™ MC series			
To at Mathematical	WIGOIL WIG series			
Test Methods and	Measuring equipment: IWATSU VOAC7512, H	IIOKI RM3545 (or its equivalent)		
Remarks				
0.0.10.0	r (ODF)			
8. Self Resonance I				
	BK series			
	BKH series	 		
	BKP series			
	MCF series			
	CK series	Defaute and annifortion		
	CKS series	Refer to each specification.		
Specified Value	CKP series	-		
	LK series			
	HK0603, HK1005			
	HK1608, HK2125	Refer to each specification.		
	HKQ0603	Training to dust oppositionation.		
	AQ105			
-	MCOIL™ MC series	_		
	LK, CK Series:	(فعمان شر		
Test Methods and	Measuring equipment : 4195A(or its eq			
Remarks	Measuring jig : 16092A (or its e	equivalent)		
	HK, HKQ, AQ Series:			
	Measuring equipment : 8719C (or its ed	quivalent)		

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

9. Resistance to Flo	of Cultaburk	
9. Resistance to Fig	BK series	
	BKH series	
	BKP series	
	MCF series	
	CK series	
	CKS series	
Specified Value	CKP series	No mechanical damage.
	LK series	
	HK0603, HK1005	
	HK1608, HK2125	
	HKQ0603	
	AQ105	
	MCOIL™ MC series	DIVINOS ON ONO OND THE THE THEOROGOD THEOROGODY TO O
Test Methods and Remarks	Warp : 2mm (BK Series, BKP, E Series) : 1mm (BKH0603, MCF Series) Testing board : glass epoxy-resin substrate : 0.8mm	Warp

10. Solderability				
· ·	BK series			
	BKH series			
	BKP series			
	MCF series			
	CK series			
	CKS series		At least 90% of terminal electrode is covered by new solder.	
Specified Value	CKP series			
	LK series			
	HK0603, HK1005			
	HK1608, HK2125			
	HKQ0603			
	AQ105			
	MCOIL [™] MC series			
Test Methods and	Solder temperature	:230±5°C (JIS Z	3282 H60A or H63A)	
Remarks	Solder temperature	:245±3°C (Sn/3.0	0Ag/0.5Cu)	
i terriar No	Duration	:4±1 sec.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

11. Resistance to S	Soldering				
	BK series		A		
	BKH series		Appearance: No significant abnormality		
	BKP series		Impedance change: Within ±30%		
	MCF series		Appearance: No significant abnormality Impedance change: Within ±20%		
	CK series		Appearance: No significant abnormality Inductance change: R10~4R7⇒Within ±10%、6R8~100⇒Within ±15%		
	CKS series		Appearance: No significant abnormality Inductance change: Within ±20%		
Specified Value	CKP series		Appearance: No significant abnormality Inductance change: Within ±30%		
	LK series		Appearance: No significant abnormality Inductance change: 1005⇒Within ±15% 1608,2125⇒ 47N~4R7: Within ±10% 5R6~330: Within ±15%		
	HK0603, HK1005				
	HK1608, HK2125		Appearance: No significant abnormality		
	HKQ0603		Inductance change: Within ±5%		
	AQ105				
	MCOIL™ MC series		Appearance: No significant abnormality Inductance change: Within ±10%		
	Solder temperature	:260±5°C			
	Duration	:10±0.5 sec.			
Test Methods and	Preheating temperature	:150 to 180°C			
Remarks	Preheating time	:3 min.			
	Flux	:Immersion into	o methanol solution with colophony for 3 to 5 sec.		
			recovery under the standard condition after the test.(See Note 1)		

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

12. Thermal Shock					
	BK serie	s	A N. 100 110		
	BKH ser	BKH series		significant abnormality	
	BKP seri	ies	Impedance chang	ge: Within ±30%	
	MCF ser	ies		Appearance: No significant abnormality Impedance change: Within ±20%	
	CK serie	s	Appearance: No	significant abnormality	
	CKS ser	ies	Inductance chan	ge:Within ±20%	
Specified Value	CKP ser	ies		significant abnormality ge: Within ±30%	
	LK series	s	Appearance: No significant abnormality Inductance change: Within ±10% Q change: Within ±30%		
	HK0603,	HK1005			
	HK1608,	HK2125	Appearance: No significant abnormality		
	HKQ060	3	Inductance change: Within ±10% Q change: Within ±20%		
	AQ105		<u>] </u>		
	MCOIL™ MC series		Appearance: No significant abnormality Inductance change: Within ±10%		
	Condition	ns for 1 cycle			
	Step	temperature (°C))	time (min.)	
	1	Minimum operating temperate	ure $+0/-3$	30±3	
Test Methods and	2	Room temperatur	e	2~3	
Remarks	3	Maximum operating temperat	ture $+3/-0$	30±3	
	4	Room temperatur	e	2~3	
	Number	of cycles:5			
	Recover	y:2 to 3 hrs of recovery under the s	standard condition a	after the test.(See Note 1)	

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Damp Heat (S	 · _ · _ ·	
	BK series	Appearance: No significant abnormality
	BKH series	Impedance change: Within ±30%
	BKP series	·
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%
	CK series	Appearance: No significant abnormality
	CKS series	Inductance change: Within ±20%
0 :5 13/1	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005,1608⇒Within ±10% 2125⇒Within ±20% Q change: Within ±30%
	HK0603, HK1005	
	HK1608, HK2125	Appearance: No significant abnormality
	HKQ0603	Inductance change: Within ±10% Q change: Within ±20%
	AQ105	
	MCOIL™ MC series	Appearance: No significant abnormality
	MCOIL MC series	Inductance change: Within ±10%
	BK、BKP、BKH、LK、CK、CKS、CKP、M Temperature :40±2°C	OF Series:
	Humidity :90 to 95%RH	
	Duration :500 +24/-0 hrs	
est Methods and	Recovery :2 to 3 hrs of recovery	under the standard condition after the removal from test chamber. (See Note 1)
Remarks	HK, HKQ, AQ, MCOIL [™] MC series:	
	Temperature : 60±2°C	
	Humidity : 90 to 95%RH	
	Duration : 500 +24/-0 hrs	
	Recovery :2 to 3 hrs of recovery	under the standard condition after the removal from test chamber. (See Note 1)

(Note 1) When there are questions concerning measurement result; measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Loading under I	Damp Heat			
	BK series		A N 1 27 1 1 12	
	BKH series		Appearance: No significant abnormality	
	BKP series		Impedance change: Within ±30%	
	MCF series		_	
	CK series		Appearance: No significant abnormality	
	CKS series		Inductance change: Within ±20%	
			Appearance: No significant abnormality	
	CKP series		Inductance change: Within ±30%	
			Appearance: No significant abnormality	
0 'C 1)/ 1			Inductance change: 1005⇒Within ±10%	
Specified Value			1608 ⇒ 0.047 ~ 12.0 μ H: Within ±10% 15.0 ~ 33.0 μ H: Within ±	
	LK series		15%	
			2125⇒Within ±20%	
			Q change: Within ±30%	
	HK0603, HK1005			
	HK1608, HK2125		Appearance: No significant abnormality	
	HKQ0603		Inductance change: Within ±10% Q change: Within ±20%	
	AQ105			
	MCOIL™ MC series※ BK, BKP, BKH, LK, CK, CKS, CKP Series:		Appearance: No significant abnormality	
			Inductance change: Within ±10%	
	Temperature	:40±2°C		
	Humidity	:90 to 95%RH		
	Applied current	: Rated current		
	Duration	:500 +24/-0 hrs		
-	Recovery	:2 to 3 hrs of recovery	under the standard condition after the removal from test chamber.(See Note 1)	
Test Methods and				
Remarks	HK, HKQ, AQ, MC	OIL™ MC Series:		
	Temperature	:60±2°C		
	Humidity	:90 to 95%RH		
	Applied current	:Rated current ※MC	series ; Idc2max	
	Duration	:500 +24/-0 hrs		
	Recovery	:2 to 3 hrs of recovery	under the standard condition after the removal from test chamber.(See Note 1)	

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure.

Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48 ± 2 hrs of recovery under the standard condition.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

	BK series		
	BKH series	Appearance: No significant abnormality	
	BKP series	Impedance change: Within ±30%	
	MCF series	Appearance: No significant abnormality Impedance change: Within ±20%	
	CK series	Appearance: No significant abnormality	
	CKS series	Inductance change: Within ±20%	
	CKP series	Appearance: No significant abnormality Inductance change: Within ±30%	
Specified Value	LK series	Appearance: No significant abnormality Inductance change: 1005⇒Within ±10% 1608⇒0.047∼12.0 μH: Within ±10% 15.0∼33.0 μH: Within ± 15% 2125⇒Within ±20% Q change: Within ±30%	
	HK0603, HK1005		
	HK1608, HK2125	Appearance: No significant abnormality Inductance change: Within ±10% Q change: Within ±20%	
	HKQ0603		
	AQ105		
	MCOIL [™] MC series※	Appearance: No significant abnormality Inductance change: Within ±10%	
Test Methods and Remarks	Temperature : Maximum operating Applied current : Rated current : MI Duration : 500 +24/-0 hrs Recovery : 2 to 3 hrs of recovers	•	

Note on standard condition: "standard condition" referred to herein is defined as follows:

5 to 35°C of temperature, 45 to 85% relative humidity, and 86 to 106kPa of air pressure.

When there are questions concerning measurement results:

In order to provide correlation data, the test shall be conducted under condition of $20\pm2^{\circ}C$ of temperature, 60 to 70% relative humidity, and 86 to 106kPa of air pressure. Unless otherwise specified, all the tests are conducted under the "standard condition."

(Note 1) Measurement shall be made after 48±2 hrs of recovery under the standard condition.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer chip inductors Multilayer chip inductors for high frequency, Multilayer chip bead inductors Multilayer common mode choke coils (MC series F type)

■PRECAUTIONS

1. Circuit Design

◆Verification of operating environment, electrical rating and performance

 A malfunction in medical equipment, spacecraft, nuclear reactors, etc. may cause serious harm to human life or have severe social ramifications.

Precautions

As such, any inductors to be used in such equipment may require higher safety and/or reliability considerations and should be clearly differentiated from components used in general purpose applications.

- ◆Operating Current(Verification of Rated current)
 - 1. The operating current including inrush current for inductors must always be lower than their rated values.
- 2. Do not apply current in excess of the rated value because the inductance may be reduced due to the magnetic saturation effect.

2. PCB Design

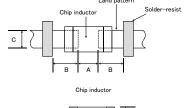
Precautions

◆Pattern configurations(Design of Land-patterns)

1. When inductors are mounted on a PCB, the size of land patterns and the amount of solder used (size of fillet) can directly affect inductor performance.

Therefore, the following items must be carefully considered in the design of solder land patterns:

- (1) The amount of solder applied can affect the ability of chips to withstand mechanical stresses which may lead to breaking or cracking. Therefore, when designing land-patterns it is necessary to consider the appropriate size and configuration of the solder pads which in turn determines the amount of solder necessary to form the fillets.
- (2) When more than one part is jointly soldered onto the same land or pad, the pad must be designed so that each component's soldering point is separated by solder-resist.
- (3) The larger size of land patterns and amount of solder, the smaller Q value after mounting on PCB. It makes higher the Q value to design land patterns smaller than terminal electrode of chips.
- ◆Pattern configurations (Inductor layout on panelized[breakaway] PC boards)
 - After inductors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow soldered boards etc.) For this reason, planning pattern configurations and the position of SMD inductors should be carefully performed to minimize stress.

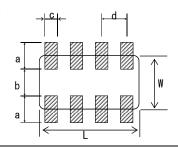

◆Pattern configurations (Design of Land-patterns)

- The following diagrams and tables show some examples of recommended patterns to prevent excessive solder amounts (larger fillets which extend above the component end terminations). Examples of improper pattern designs are also shown.
 - (1) Recommended land dimensions for a typical chip inductor land patterns for PCBs

Recommended land dimensions for Multilayer inductor

Wave-soldering (Unit:mm)

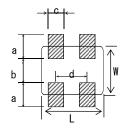
Ту	ре	1608	2012	2125	2016	2520	3216
Size	L	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.8	1.25	1.25	1.6	2.0	1.6
Α		0.8~1.0	1.0~1.4	1.0~1.4	1.0~1.4	1.0~1.4	1.8~2.5
В		0.5~0.8	0.8~1.5	0.8~1.5	0.8~1.5	0.6~1.0	0.8~1.7
С		0.6~0.8	0.9~1.2	0.9~1.2	1.3~1.6	1.6~2.0	1.2~1.6


Technical Reflow-soldering (Unit:mm)

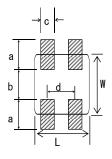
considerations

Ту	ре	0603	1005	105	1608	2012	2125	2016	2520	3216
Size	L	0.6	1.0	1.0	1.6	2.0	2.0	2.0	2.5	3.2
Size	W	0.3	0.5	0.6	0.8	1.25	1.25	1.6	2.0	1.6
-	4	0.20~0.30	0.45~0.55	0.50~0.55	0.8~1.0	0.8~1.2	0.8~1.2	0.8~1.2	1.0~1.4	1.8~2.5
E	3	0.20~0.30	0.40~0.50	0.30~0.40	0.6~0.8	0.8~1.2	0.8~1.2	0.8~1.2	0.6~1.0	0.6~1.5
()	0.25~0.40	0.45~0.55	0.60~0.70	0.6~0.8	0.9~1.6	0.9~1.6	1.2~2.0	1.8~2.2	1.2~2.0

● Recommended land dimension for Array type (Unit:mm)


Type		2010	3216		
Size	L	2.0	3.2		
Size	W	1.0	1.6		
á	а	0.5~0.6	0.7~0.9		
ŀ)	0.5~0.6	0.8~1.0		
(2	0.2~0.3	0.4~0.5		
	<u> </u>	0.5	0.8		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

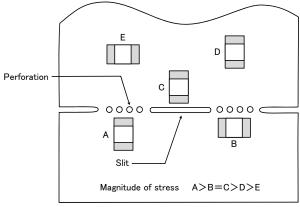

 Recommended land dimension for Multilayer common mode choke coil (Unit:mm)

Туре		0605	0806				
Size L		0.65	0.85				
Size	W	0.50	0.65				
а		0.27~0.30	0.25~0.35				
b		0.17~0.20	0.25~0.35				
С		0.20~0.26	0.25~0.35				
d		0.4	0.5				

		(Onic.min)
Ту	ре	1210
Size	L	1.0
size	W	1.25
а		0.45~0.55
b		0.7~0.8
С		0.25~0.35
d		0.55

(Unit:mm)

(2) Examples of good and bad solder application


-/	Examples of good and bad solder application						
	Item	Not recommended	Recommended				
	Mixed mounting of SMD and leaded components	Lead wire of component	Solder-resist				
	Component placement close to the chassis	Chassis Solder (for grounding) Electrode pattern	Solder-resist				
	Hand-soldering of leaded components near mounted components	Lead wire of component Soldering iron	Solder-resist				
	Horizontal component placement		Solder-resist				

- ◆Pattern configurations(Inductor layout on panelized[breakaway] PC boards)
 - 1-1. The following are examples of good and bad inductor layout; SMD inductors should be located to minimize any possible mechanical stresses from board warp or deflection.

Item	Not recommended	Recom	mended
Deflection of the board			Position the component at a right angle to the direction of the mechanical stresses that are anticipated.

1-2. To layout the inductors for the breakaway PC board, it should be noted that the amount of mechanical stresses given will vary depending on inductor layout.

An example below should be counted for better design.

1-3. When breaking PC boards along their perforations, the amount of mechanical stress on the inductors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD inductor layout must also consider the PCB splitting procedure.

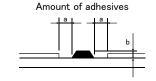
3. Considerations for automatic placement

- ◆Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the inductors when mounting onto the PC boards.
 - 2. The maintenance and inspection of the mounter should be conducted periodically.

Precautions

◆ Selection of Adhesives

- 1. Mounting inductors with adhesives in preliminary assembly, before the soldering stage, may lead to degraded inductor characteristics unless the following factors are appropriately checked; the size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, it is imperative to consult the manufacturer of the adhesives on proper usage and amounts of adhesive to use.
- ◆Adjustment of mounting machine
 - 1. If the lower limit of the pick-up nozzle is low, too much force may be imposed on the inductors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle:
 - (1) The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board.
 - (2) The pick-up pressure should be adjusted between 1 and 3N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins should be used under the PC board. The following diagrams show some typical examples of good pick-up nozzle placement:


Item	Improper method	Proper method
Single-sided mounting	chipping or cracking	supporting pins or back-up pins
Double-sided mounting	chipping or cracking	supporting pins or back-up pins

Technical considerations

- 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the inductors because of mechanical impact on the inductors. To avoid this, the monitoring of the width between the alignment pin in the stopped position, and maintenance, inspection and replacement of the pin should be conducted periodically.
- ◆Selection of Adhesives
 - 1. Some adhesives may cause reduced insulation resistance. The difference between the shrinkage percentage of the adhesive and that of the inductors may result in stresses on the inductors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives.
 - (1) Required adhesive characteristics
 - a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive should have sufficient strength at high temperatures.
 - c. The adhesive should have good coating and thickness consistency.
 - d. The adhesive should be used during its prescribed shelf life.
 - e. The adhesive should harden rapidly.
 - f. The adhesive must not be contaminated.
 - g. The adhesive should have excellent insulation characteristics.
 - h. The adhesive should not be toxic and have no emission of toxic gasses.
 - (2) When using adhesives to mount inductors on a PCB, inappropriate amounts of adhesive on the board may adversely affect component placement. Too little adhesive may cause the inductors to fall off the board during the solder process. Too much adhesive may cause defective soldering due excessive flow of adhesive on to the land or solder pad.

[Recommended conditions]

Figure	0805 case sizes as examples		
а	0.3mm min		
b	100∼120 μm		
С	Area with no adhesive		

After inductors are bonded

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

4. Soldering

Precautions

◆ Selection of Flux

- 1. Since flux may have a significant effect on the performance of inductors, it is necessary to verify the following conditions prior to use;
 - (1) Flux used should be with less than or equal to 0.1 wt% (Chlorine conversion method) of halogenated content. Flux having a strong acidity content should not be applied.
 - (2) When soldering inductors on the board, the amount of flux applied should be controlled at the optimum level.
 - (3) When using water-soluble flux, special care should be taken to properly clean the boards.

♦Soldering

 Temperature, time, amount of solder, etc. are specified in accordance with the following recommended conditions, and please contact us about peak temperature when you use lead-free paste.

◆Selection of Flux

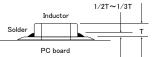
- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate the flux, or highly acidic flux is used, an excessive amount of residue after soldering may lead to corrosion of the terminal electrodes or degradation of insulation resistance on the surface of the Inductor.
- 1-2. Flux is used to increase solderability in flow soldering, but if too much is applied, a large amount of flux gas may be emitted and may detrimentally affect solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved by water content in the air, the residue on the surface of Inductor in high humidity conditions may cause a degradation of insulation resistance and therefore affect the reliability of the components. The cleaning methods and the capability of the machines used should also be considered carefully when selecting water-soluble flux.

♦Soldering

1-1. Preheating when soldering

Preheating: Inductors shall be preheated sufficiently, and the temperature difference between the inductors and solder shall be within 130° C.

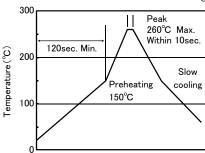
Cooling: The temperature difference between the components and cleaning process should not be greater than 100° C. Inductors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling. Therefore, the soldering process must be conducted with a great care so as to prevent malfunction of the components due to excessive thermal shock.


[Reflow soldering]

[Recommended condition for Pb-free soldering]

Caution

1. Solder (fillet) should wet up to 1/2 to 1/3 of the thickness of an inductor ideally as shown below:

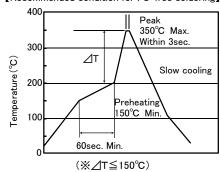


- 2. Because excessive dwell time can detrimentally affect solderability, soldering duration shall be kept as close to recommended time as possible.
- 3. The allowable number of reflow soldering is two (2) times.

Technical considerations

[Wave soldering]

[Recommended condition for Pb-free soldering]



Caution

- 1. Make sure the inductors are preheated sufficiently.
- 2. The temperature difference between the inductor and melted solder should be within 130°C.
- 3. Cooling after soldering should be as gradual as possible.
- 4. The allowable number of wave soldering is one (1) time.
- 5. Wave soldering must not be applied to the inductors designated as for reflow soldering only.

[Hand soldering]

[Recommended condition for Pb-free soldering]

Caution

- 1. It is recommended to use a 20W soldering iron with a maximum tip diameter of 1.0 mm.
- 2. The soldering iron shall not directly touch inductors
- 3. The allowable number of hand soldering is one (1) time $\,$

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

5. Cleaning Cleaning conditions 1. When cleaning the PC board after the Inductors are all mounted, select the appropriate cleaning solution according to the type of flux Precautions used and purpose of the cleaning (e.g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying, through a test run, that the cleaning process does not affect the inductor's characteristics. **♦**Cleaning conditions 1. The use of inappropriate solutions can cause foreign substances such as flux residue to adhere to the inductor, resulting in a degradation of the inductor's electrical properties (especially insulation resistance). 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the inductors. Technical In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking considerations of the inductor or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions should be carefully checked: 20W/ℓ or less Ultrasonic output Ultrasonic frequency 40kHz or less Ultrasonic washing period 5 min. or less

6. Resin coating and mold

Precautions

- 1. With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal storage conditions resulting in the deterioration of the inductor's performance.
- 2. Thermal expansion and thermal shrinkage characteristics of resins may lead to the deterioration of inductors' performance.
- 3. When a resin hardening temperature is higher than inductor operating temperature, the stresses generated by the excessive heat may lead to damage in inductors.

7. Handling

- ◆Breakaway PC boards (splitting along perforations)
 - 1. When splitting the PC board after mounting inductors and other components, care is required so as not to give any stresses of deflection or twisting to the board.
 - 2. Board separation should not be done manually, but by using the appropriate devices.
- ◆General handling precautions
 - · Always wear static control bands to protect against ESD.
 - · Keep the inductors away from all magnets and magnetic objects.
- Use non-magnetic tweezers when handling inductors.
 - · Any devices used with the inductors (soldering irons, measuring instruments) should be properly grounded.
 - · Keep bare hands and metal products (i.e., metal desk) away from inductor electrodes or conductive areas that lead to chip electrodes.
 - Keep inductors away from items that generate magnetic fields such as speakers or coils.
 - ◆Mechanical considerations

Be careful not to subject the inductors to excessive mechanical shocks.

- (1) If inductors are dropped on the floor or a hard surface they should not be used.
- (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions

◆Storage

Precautions

To maintain the solderability of terminal electrodes and to keep the packaging material in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible.

Recommended conditions

Ambient temperature: 30°C or below Humidity: 70% RH or below

The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of inductor is deteriorated as time passes, so inductors should be used within 6 months from the time of delivery.

•Inductor should be kept where no chlorine or sulfur exists in the air.

Technical considerations

♦Storage

If the parts are stocked in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the inductors.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

SMD COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES

■PARTS NUMBER

*Operating Temp. : -25~+105°C (Including self-generated heat)

1)Series name

Code	Series name
BU	Common mode choke coil

2Dimensions of core

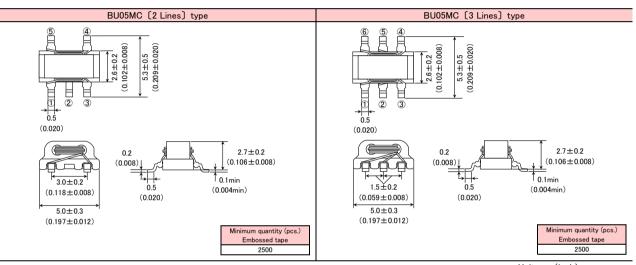
Code	Dimensions of core[mm]
05	5.0

3Shape

Фолиро	
Code	Shape
MC	Surface mount type

4 Product classification code

G			
Code	Product classification code		
Δ01~Δ10	Product classification code		


⑤Packaging

©:g	
Code	Packaging
ΔΤ	Taping

6 Internal code

Officernal code	
Code	Internal code
Δ	Standard

■STANDARD EXTERNAL DIMENSIONS / MINIMUM QUANTITY

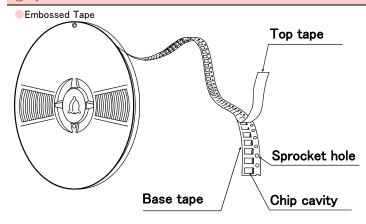
Unit:mm(inch)

The values without tolerance are for reference only.

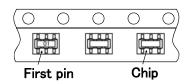
PARTS NUMBER

Parts number	EHS	Number of lines	Impedance [Ω] (typ.)	Measuring frequency [MHz]	DC Resistance [Ω] (max.)	Rated current [A] (max.)	Rated voltage [V] (D.C.)	Insulation resistance $[M\Omega]$ (min.)
BU05MC 01 T	RoHS	2	1000	60	0.12	1.0	50	100
BU05MC 08 T	RoHS	3	700	60	0.11	0.5	50	100

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

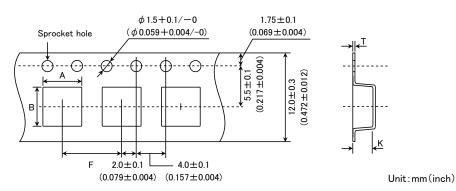

SMD COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, BALUN TRANSFORMERS

■PACKAGING

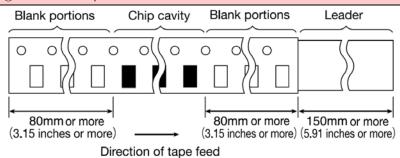

1 Minimum Quantity

Туре	Minimum Quantity [pcs]		
туре	Вох	Taping	
BU05MC	_	2500	
BU06MB	150	_	

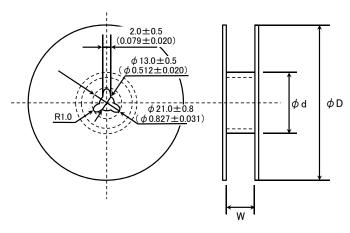
2Tape material



Chip Filled


3 Taping dimensions

Embossed tape 12mm wide (0.472 inches wide)



Type	Insertion	Chip cavity		Tape thickness		
туре	pitch	Α	В	K	Т	
BU05MC	8.0±0.1 (0.315±0.004)	5.2±0.1 (0.205±0.004)	5.6±0.1 (0.220±0.004)	3.2±0.1 (0.126±0.004)	0.4±0.05 (0.016±0.002)	
					Unit:mm(inch)	

4 Leader and Blank portion

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Туре	ΦD	ϕ d	W	
BU05MC	330 ± 2.0	80±1.0	13.5±1.0	
	(12.99 ± 0.079)	(3.15 ± 0.039)	(0.53 ± 0.039)	

Unit:mm(inch)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

SMD COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, BALUN TRANSFORMERS

PRECAUTIONS

1. Circuit Design

Precautions

◆Operating environment

1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems,) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance.

2. PCB Design Land pattern design Precautions 1. Please contact any of our offices for a land pattern, and refer to a recommended land pattern of specifications. ◆Land pattern design Surface Mounting · Mounting and soldering conditions should be checked beforehand. · Applicable soldering process to these products is reflow soldering only. Recommended Land Patterns [BU05MC] 0.5 0.5 Technical considerations 32 Unit:mm

3. Considerations for automatic placement

Precautions

- Adjustment of mounting machine
 - 1. Excessive impact load should not be imposed on the products when mounting onto the PC boards.
- 2. Mounting and soldering conditions should be checked beforehand.

Technical considerations

- ◆Adjustment of mounting machine
 - 1. When installing products, care should be taken not to apply distortion stress as it may deform the products.

4. Soldering

◆Reflow soldering

- 1. Please contact any of our offices for a reflow soldering, and refer to the recommended condition specified.
- 2. This product can be used reflow soldering only.
- 3. Please do not add any stress to a product until it returns in normal temperature after reflow soldering.

◆Lead free soldering

Precautions

- 1. When using products with lead free soldering, we request to use them after confirming adhesion, temperature of resistance to soldering heat, soldering etc sufficiently.
- ◆Recommended conditions for using a soldering iron

[BU05MC]

- Put the soldering iron on the land-pattern.
- Soldering iron's temperature Below 350°C
- Duration 3 seconds or less
- The soldering iron should not directly touch the inductor.

◆Reflow soldering

Technical considerations

- 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.
- ◆Recommended conditions for using a soldering iron

If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products.

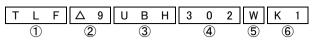
5. Cleaning

Precautions

- ◆Cleaning conditions
 - 1. Please contact any of our offices for a cleaning.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. ◆Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting product, care should be taken not to give any stresses of deflection or twisting to the board. 2. Board separation should not be done manually, but by using the appropriate devices. ◆Mechanical considerations Precautions 1. Please do not give the product any excessive mechanical shocks. 2. Please do not add any shock and power to a product in transportation. ◆Pick-up pressure 1. Please do not push to add any pressure to a winding part. Please do not give any shock and push onto an exposed part of ferrite cores. ◆Packing 1. Please avoid accumulation of a packing box as much as possible. 1. There is a case that a characteristic varies with magnetic influence. ◆Breakaway PC boards (splitting along perforations) 1. The position of the product on PCBs shall be carefully considered to minimize the stress caused from splitting of the PCBs. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by the handling in transportation. ◆Pick-up pressure 1. An excessive shock or stress may cause a damage to the product or a deterioration of a characteristic. **♦**Packing 1. If packing boxes are accumulated, that could cause a deformation on packing tapes or a damage on the products.

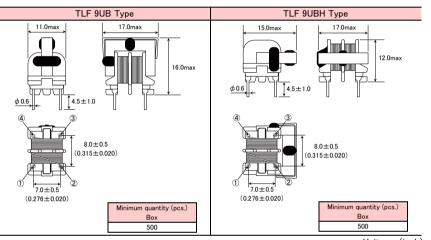

7. Storage condi	ions
Precautions	 ♦ Storage To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Recommended conditions
Technical considerations	◆Storage 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place.

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES

■PARTS NUMBER

* Operating Temp.:-25 \sim +105 $^{\circ}$ C (Including self-generated heat)

Δ:	=Blank	spac


①Ser	ries	name
	0	4~

Code	Series name							
TLF	Common mode choke coil							
②Dimensions of	core							
Code	Dimensions of core[mm]							
Δ9	9							
3Shape								
Code	Shape							
UB△	U core, vertically split wound							
UBH	U core, horizontally split wound							

4 Nominal inductance

Code (example)	Nominal inductance [μ H]
302	3000
203	20000
5Inductance tol	erance
Code	Inductance tolerance
W	+100/-10%
6Internal code	
Code	Internal code
K1	Adhesive fixation

■STANDARD EXTERNAL DIMENSIONS / MINIMUM QUANTITY

Unit:mm(inch)

■PARTS NUMBER

Parts number	EHS	Number of lines	Nominal inductance [mH]	Inductance tolerance	DC Resistance [Ω] (max.)	Rated current [A] (max.)	Rated voltage [V] (D.C.)	Insulation resistance [MΩ] (min.)
TLF 9UBH302W K1	RoHS	2	3.0	+100/-10%	1.5	0.40	50	100
TLF 9UB 302W K1	RoHS	2	3.0	+100/-10%	1.5	0.40	50	100
TLF 9UBH802W K1	RoHS	2	8.0	+100/-10%	3.0	0.30	50	100
TLF 9UB 802W K1	RoHS	2	8.0	+100/-10%	3.0	0.30	50	100
TLF 9UBH203W K1	RoHS	2	20.0	+100/-10%	6.5	0.18	50	100
TLF 9UB 203W K1	R₀HS	2	20.0	+100/-10%	6.5	0.18	50	100

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES LEADED COMMON MODE CHOKE COILS FOR AC LINES

■PACKAGING

①Minimum Quantity

TLH/TLF Type

Time	Minimum Quantity[pcs]				
Туре	Box				
TLH10UA	1000				
TLH10UB	1000				
TLF9UA□	500				
TLF9UB□	500				

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, LEADED COMMON MODE CHOKE COILS FOR AC LINES

RELIABILITY DATA 1. Operating Temperature Range -25~+ 105°C Specified Value TLH, TLF Type Test Method and Including temperature rise due to self-generated heat. Remarks 2. Storage temperature range -40~+ 85°C Specified Value TLH, TLF Type 3. Rated current Specified Value TLH, TLF Type Within the specified range TLH10U : The maximum value of AC current within the temperature rise of 60°C Test Method and TLF9UA : The maximum value of AC current within the temperature rise of 45°C Remarks TLF9UB : The maximum value of DC current within the temperature rise of 45°C 4. Inductance Specified Value TLH, TLF Type Within the specified tolerance TLF9U: : LCR meter 4284A or its equivalent Measuring equipment Measuring frequency : 1kHz Test Method and : 1Vrms Measuring voltage Remarks TLH, TLF(except TLF9U): Measuring equipment : LCR meter 4284A or its equivalent : 1kHz Measuring frequency Measuring voltage : 0.1Vrms 5. DC resistance Specified Value TLH, TLF Type Within the specified tolerance Test Method and : DC ohmmeter Measuring equipment Remarks 6. Terminal strength tensile force TLH, TLF Type Specified Value No abnormality TLH10UA, TLH10UB, TLF9U: Apply the stated tensile force gradually in the direction to draw terminal. force [N] duration [s] 5 30±5 Test Method and Remarks TLF (except TLF9U): Apply the stated tensile force gradually in the direction to draw terminal. force [N] duration [s] 30 ± 5 10 7. Insulation resistance between wires Specified Value TLH, TLF Type 100M Ω min. : 500VDC (TLH, TLF (except TLF9UB)) Applied voltage Test Method and : 250VDC (TLF9UB) Remarks Duration : 60sec.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

8. Insulation resista	nce between wire and co	re					
Specified Value	TLH, TLF Type		100M Ω min.(except TLH)				
Test Method and Remarks	:2	500VDC (TLF (except 250VDC (TLF9UB) 60 sec.	TLF9UB))				
9. Withstanding : be	tween wires						
Specified Value	TLH, TLF Type		No abnormality				
Test Method and Remarks	: {	2000VAC (TLH, TLF (e 500VDC (TLF9UB) 60sec	except TLF9UB))				
10. Withstanding : b	etween wires and core						
Specified Value	TLH, TLF Type		No abnormality (except TLH)				
Test Method and Remarks	: {	2000VAC (TLF (except 500VDC (TLF9UB) 60sec.	pt TLF9UB))				
11. Rated voltage							
Specified Value	TLH, TLF Type		Within the specified range				
Test Method and Remarks	TLH, TLF (except TLF9 TLF9UB	9UB) : 250VAC : 50VDC					
12. Resistance to v	ihration						
12. Resistance to v	Ibration						
Specified Value	TLH, TLF Type		TLF9U : Inductance change : Within $\pm 5\%$ TLH, TLF (except TLF9U) : Appearance is no abnormality and within the specified range				
Test Method and Remarks	TLH, TLF : According t Direction Frequency range Amplitude Mounting method Recovery	: 2hrs each in X, Y a : 10 to 55 to 10Hz (: 1.5mm (shall not e : soldering onto PC	xceed acceleration 196m/s^2) board covery under the standard condition after the removal from test chamber, followed by the				
12 Caldanal III							
13. Solderability Specified Value	TLH, TLF Type		At least 90% of terminal electrode is covered by new solder.				
Test Method and Remarks	TLH, TLF: Solder temperature Duration Immersion depth TLH, TLF: Solder temperature	: 245±5°C	n from PBC mounted level.				
	Duration Immersion depth	: 4±1sec. : Up to 1.0 to 1.5mm	n from PBC mounted level.				

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Resistance to s	coldering heat								
Specified Value	TLH, TLF Type	TLF9UA : Inductance change : Within ±5%							
Test Method and Remarks	Recovery : At least 1hr of remeasurement with TLH, TLF: Solder temperature : 260±5°C Duration : 10±1sec. Immersion depth : Up to 1.0 to 1.5m	m from PBC mounted level. scovery under the standard condition after the removal from test chamber, followed by the							
15. Thermal shock									
15. Thermal shock	T								
Specified Value	TLH, TLF Type	TLF9UA : Inductance change : Within $\pm 15\%$ TLH, TLF (except TLF9UA) : Withstanding voltage : No abnormality Insulation resistance : No abnormality							
Test Method and Remarks	TLH, TLF: According to JIS C60068-2-14. Conditions for 1 cycle -25°C~+85°C, keep each 30min Number of cycles : 10 Recovery : At least 1hr of recovery under the standard condition after the removal from test chamber, followed by the measurement within 2 hrs.								
16. Damp heat									
Specified Value	TLH, TLF Type	TLF9UA : Inductance change : Within $\pm 15\%$ TLH, TLF (except TLF9UA) : Withstanding voltage : No abnormality Insulation resistance : No abnormality							
Test Method and Remarks	$\begin{array}{lll} \text{TLH, TLF:} \\ \text{Temperature} &: 60 \pm 2^{\circ}\text{C} \\ &: 40 \pm 2^{\circ}\text{C} \text{ (\%except TLF90)} \\ \text{Humidity} &: 90 \sim 95\%\text{RH} \\ \text{Duration} &: 500 \text{ hrs} \\ \text{Recovery} &: At least 1hr of recovery upper support of the property of the $	J) nder the standard removal from test chamber followed by the measurement within 2 hrs.							
17. Loading under o	damp heat								
Specified Value	TLH, TLF Type	Withstanding voltage: No abnormality Insulation resistance: No abnormality							
Test Method and Remarks	Applied voltage : Apply the following sp TLF9UA 25 TLF9UB 56	LF9U) urrent across windings (※except TLF9U) ecified voltage between windings. 50VAC DVDC ry under the standard removal from test chamber followed by the measurement within 2 hrs.							

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Low temperatur	e life test	
Specified Value	TLH, TLF Type	TLF9U : Inductance change : Within $\pm 15\%$ TLH, TLF (except TLF9U) : Withstanding voltage : No abnormality Insulation resistance : No abnormality
Test Method and Remarks	TLH, TLF: Temperature : −25±2°C : −40±2°C (※TLF•T Duration : 500 hrs Recovery : At least 1hr of recove	TLH) ery under the standard removal from test chamber followed by the measurement within 2 hrs.

		TLF9U : Inductance change : Within ±15%
Specified Value	TLH, TLF Type	TLH, TLF (except TLF9U): Withstanding voltage: No abnormality
		Insulation resistance : No abnormality
	TLH, TL F:	
Test Method and	Temperature : 105±3°C (※	TLF·TLH)
Remarks	Duration : 500 hrs	
	Recovery : At least 1hr of	recovery under the standard removal from test chamber followed by the measurement within 2 hrs.

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, LEADED COMMON MODE CHOKE COILS FOR AC LINES

■PRECAUTIONS

1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical Precautions equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. 2. PCB Design Design Precautions 1. Please design insertion pitches as matching to that of leads of the component on PCBs. ◆Design Technical 1. When Inductors are mounted onto a PC board, hole dimensions on the board should match the lead pitch of the component, if not, it will considerations cause breakage of the terminals or cracking of terminal roots covered with resin as excess stress travels through the terminal legs. 3. Soldering ◆Wave soldering 1. Please refer to the specifications in the catalog for a wave soldering. 2. Do not immerse the entire inductor in the flux during the soldering operation. Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming of adhesion, temperature of resistance to Precautions soldering heat, etc. sufficiently. Recommended conditions for using a soldering iron Put the soldering iron on the land-pattern. Soldering iron's temperature – Below 350°C Duration – 3 seconds or less · The soldering iron should not directly touch the product. ◆Lead free soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently Technical degrade the reliability of the products. considerations ◆Recommended conditions for using a soldering iron If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. 4. Cleaning Cleaning conditions Precautions 1. Please contact any of our offices for about a cleaning. 5. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. Mechanical considerations 1. Please do not give the product any excessive mechanical shocks. Precautions 2. Please do not add any shock or power to a product in transportation. ◆Packing 1. Please do not give the product any excessive mechanical shocks. In loading, please pay attention to handling indication mentioned in a packing box (a loading direction / number of maximum loading / Handling 1. There is a case that a characteristic varies with magnetic influence. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by a fall. ◆Packing 1. There is a case that a lead route turns at by a fall or an excessive shock.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Storage conditions ◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Recommended conditions Ambient temperature : 0~40°C Precautions Humidity: Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions, the solderbility of electrodes decreases gradually, so the products should be mounted within one year from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. **♦**Storage Technical 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes considerations and deterioration of taping/packaging materials may take place.

LEADED COMMON MODE CHOKE COILS FOR AC LINES

WAY

△=Blank space

PARTS NUMBER

Т	. L	F	Δ	9	U	Α	Δ	1	0	2	W	0	R	8	K	1
	(1) (2)			(3)			(4)		(5)		6		(7	7)		

①Series name						
Ī	Code	Series name				
	TLF	Common mode choke				
	TLH	Hybrid choke				

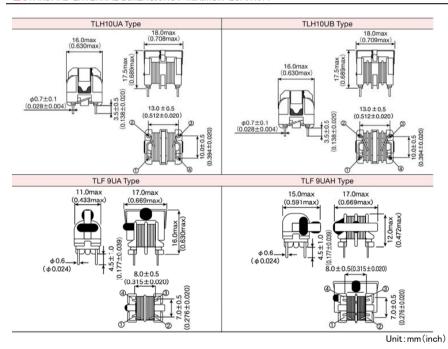
2Dimensions of core						
Code	Dimensions of core[mm]					
△9	9					
10	10					

3Shape							
Code	Shape						
UAΔ	U core, vertical type						
UAH	U core, horizontal type						
UB△	U core, vertically split wound						
	<u>-</u>						

4 Nominal Inductance

Code (example)	Nominal Inductance[μ H]
102	1000
103	10000

*Operating Temp. : -25~+105°C (Including self-generated heat)



6Rated current						
Code	Rated current[A]					
R54	0.54					
0R8	0.8					

%R=Decimal	point

1	(I)Internal code	
	Code	Internal code
	K1	Adhesive fixation

■STANDARD EXTERNAL DIMENSIONS / MINIMUM QUANTITY

Туре	Minimum quantity(pcs.) Box
TLH type	500
TLF type	500

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

TLH10UA type (Hybrid choke)

Parts number	EHS	Common mode inductance [mH]	Inductance tolerance	Normal mode inductance [mH] (typ.)	DC Resistance [Ω](max.)	Rated current [A] (max.)	Rated voltage AC [V] (max.)
TLH10UA 901 2R0	RoHS	0.9	min.	0.067	0.089	2.0	250
TLH10UA 112 1R8	RoHS	1.1	min.	0.087	0.126	1.8	250
TLH10UA 152 1R6	RoHS	1.5	min.	0.126	0.171	1.6	250
TLH10UA 212 1R4	RoHS	2.1	min.	0.160	0.222	1.4	250
TLH10UA 282 1R2	RoHS	2.8	min.	0.215	0.272	1.2	250
TLH10UA 432 1R0	RoHS	4.3	min.	0.330	0.398	1.0	250
TLH10UA 622 0R8	RoHS	6.2	min.	0.430	0.578	0.8	250
TLH10UA 872 0R7	RoHS	8.7	min.	0.644	0.878	0.7	250
TLH10UA 992 0R6	RoHS	9.9	min.	0.836	1.138	0.6	250
TLH10UA 143 0R5	RoHS	14	min.	1.256	1.567	0.5	250

TLH10UB type(Hybrid choke)

Parts number	EHS	Common mode inductance [mH]	Inductance tolerance	Normal mode inductance [mH] (typ.)	DC Resistance [Ω](max.)	Rated current [A] (max.)	Rated voltage AC [V] (max.)
TLH10UB 701 2R0	RoHS	0.7	min.	0.056	0.097	2.0	250
TLH10UB 112 1R7	RoHS	1.1	min.	0.068	0.133	1.7	250
TLH10UB 142 1R4	RoHS	1.4	min.	0.113	0.214	1.4	250
TLH10UB 232 1R2	RoHS	2.3	min.	0.150	0.274	1.2	250
TLH10UB 352 1R0	RoHS	3.5	min.	0.232	0.422	1.0	250
TLH10UB 442 0R8	RoHS	4.4	min.	0.328	0.624	0.8	250
TLH10UB 872 0R7	RoHS	8.7	min.	0.580	0.982	0.7	250
TLH10UB 972 0R6	RoHS	9.7	min.	0.735	1.314	0.6	250
TLH10UB 113 0R5	RoHS	11	min.	0.877	1.577	0.5	250

TLF 9UA type

•									
Parts number	EHS	Common mode inductance [mH]	Inductance tolerance	DC Resistance [Ω](max.)	Rated current [A] (max.)	Rated voltage AC [V] (max.)			
TLF 9UA 102W0R8K1	R₀HS	1.0	+100/-10%	0.5	0.80	250			
TLF 9UA 202WR54K1	RoHS	2.0	+100/-10%	1.0	0.54	250			
TLF 9UA 302WR42K1	RoHS	3.0	+100/-10%	1.5	0.42	250			
TLF 9UA 502WR32K1	RoHS	5.0	+100/-10%	2.5	0.32	250			
TLF 9UA 802WR25K1	R₀HS	8.0	+100/-10%	4.0	0.25	250			
TLF 9UA 103WR23K1	RoHS	10	+100/-10%	4.5	0.23	250			

TLF 9UAH type

Parts number	EHS	Common mode inductance [mH]	Inductance tolerance	DC Resistance [Ω](max.)	Rated current [A] (max.)	Rated voltage AC [V] (max.)			
TLF 9UAH102W0R8K1	RoHS	1.0	+100/-10%	0.5	0.80	250			
TLF 9UAH202WR54K1	RoHS	2.0	+100/-10%	1.0	0.54	250			
TLF 9UAH302WR42K1	RoHS	3.0	+100/-10%	1.5	0.42	250			
TLF 9UAH502WR32K1	RoHS	5.0	+100/-10%	2.5	0.32	250			
TLF 9UAH802WR25K1	R₀HS	8.0	+100/-10%	4.0	0.25	250			
TLF 9UAH103WR23K1	RoHS	10	+100/-10%	4.5	0.23	250			

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our product specification sheets. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES LEADED COMMON MODE CHOKE COILS FOR AC LINES

■PACKAGING

①Minimum Quantity

TLH/TLF Type

Туре	Minimum Quantity[pcs]	
	Box	
TLH10UA	1000	
TLH10UB		
TLF9UA□	F00	
TLF9UB□	500	

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, LEADED COMMON MODE CHOKE COILS FOR AC LINES

RELIABILITY DATA 1. Operating Temperature Range -25~+ 105°C Specified Value TLH, TLF Type Test Method and Including temperature rise due to self-generated heat. Remarks 2. Storage temperature range -40~+ 85°C Specified Value TLH, TLF Type 3. Rated current Specified Value TLH, TLF Type Within the specified range TLH10U : The maximum value of AC current within the temperature rise of 60°C Test Method and TLF9UA : The maximum value of AC current within the temperature rise of 45°C Remarks TLF9UB : The maximum value of DC current within the temperature rise of 45°C 4. Inductance Specified Value TLH, TLF Type Within the specified tolerance TLF9U: : LCR meter 4284A or its equivalent Measuring equipment Measuring frequency : 1kHz Test Method and : 1Vrms Measuring voltage Remarks TLH, TLF(except TLF9U): Measuring equipment : LCR meter 4284A or its equivalent : 1kHz Measuring frequency Measuring voltage : 0.1Vrms 5. DC resistance Specified Value TLH, TLF Type Within the specified tolerance Test Method and : DC ohmmeter Measuring equipment Remarks 6. Terminal strength tensile force TLH, TLF Type Specified Value No abnormality TLH10UA, TLH10UB, TLF9U: Apply the stated tensile force gradually in the direction to draw terminal. force [N] duration [s] 5 30±5 Test Method and Remarks TLF (except TLF9U): Apply the stated tensile force gradually in the direction to draw terminal. force [N] duration [s] 30 ± 5 10 7. Insulation resistance between wires Specified Value TLH, TLF Type 100M Ω min. : 500VDC (TLH, TLF (except TLF9UB)) Applied voltage Test Method and : 250VDC (TLF9UB) Remarks Duration : 60sec.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

8. Insulation resista	nce between wire and cor	e	
Specified Value	TLH, TLF Type		100M Ω min.(except TLH)
Test Method and Remarks	: 2	00VDC (TLF (except 50VDC (TLF9UB) 0 sec.	TLF9UB))
9. Withstanding : be	tween wires		
Specified Value	TLH, TLF Type		No abnormality
Test Method and Remarks	: 50	000VAC (TLH, TLF (e 00VDC (TLF9UB) 0sec	except TLF9UB))
10. Withstanding : b	etween wires and core		
Specified Value	TLH, TLF Type		No abnormality (except TLH)
Test Method and Remarks	: 50	000VAC (TLF (except 00VDC (TLF9UB) 0sec.	t TLF9UB))
11. Rated voltage			
Specified Value	TLH, TLF Type		Within the specified range
Test Method and Remarks	TLH, TLF (except TLF9UB) : 250VAC TLF9UB : 50VDC		
12. Resistance to v	ibration		
12. Resistance to v	Ibration		
Specified Value	TLH, TLF Type		TLF9U : Inductance change : Within $\pm 5\%$ TLH, TLF (except TLF9U) : Appearance is no abnormality and within the specified range
Test Method and Remarks	TLH, TLF: According to JIS C60068-2-6. Direction : 2hrs each in X, Y and Z direction Total: 6hrs Frequency range : 10 to 55 to 10Hz (1 min.) Amplitude : 1.5mm (shall not exceed acceleration 196m/s²) Mounting method : soldering onto PC board Recovery : At least 1hr of recovery under the standard condition after the removal from test chamber, followed by the measurement within 2hrs.		
10 C-11 177			
13. Solderability	TILL TIET:		At least 00% of terminal alestuada is accounted to the control of
Specified Value	TLH, TLF Type		At least 90% of terminal electrode is covered by new solder.
Test Method and Remarks	TLH, TLF: Solder temperature Duration Immersion depth	: 235±0.5°C : 2±0.5sec. : Up to 1.5 to 2.0mn	n from PBC mounted level.
	TLH, TLF: Solder temperature Duration Immersion depth	: 245±5°C : 4±1sec. : Up to 1.0 to 1.5mn	n from PBC mounted level.

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

14. Resistance to s	coldering heat		
Specified Value	TLH, TLF Type	TLF9UA : Inductance change : Within ±5%	
Test Method and Remarks	Recovery : At least 1hr of remeasurement with TLH, TLF: Solder temperature : 260±5°C Duration : 10±1sec. Immersion depth : Up to 1.0 to 1.5m	m from PBC mounted level. scovery under the standard condition after the removal from test chamber, followed by the	
15. Thermal shock			
15. Thermal shock	T		
Specified Value	TLH, TLF Type	TLF9UA: Inductance change: Within ±15% TLH, TLF (except TLF9UA): Withstanding voltage: No abnormality Insulation resistance: No abnormality	
Test Method and Remarks	TLH, TLF: According to JIS C60068-2-14. Conditions for 1 cycle -25°C~+85°C, keep each 30min Number of cycles : 10 Recovery : At least 1hr of recovery under the standard condition after the removal from test chamber, followed by the measurement within 2 hrs.		
16. Damp heat			
Specified Value	TLH, TLF Type	TLF9UA: Inductance change: Within ±15% TLH, TLF (except TLF9UA): Withstanding voltage: No abnormality Insulation resistance: No abnormality	
Test Method and Remarks	$\begin{array}{lll} \text{TLH, TLF:} \\ \text{Temperature} &: 60 \pm 2^{\circ}\text{C} \\ &: 40 \pm 2^{\circ}\text{C} \text{ (\%except TLF90)} \\ \text{Humidity} &: 90 \sim 95\% \text{RH} \\ \text{Duration} &: 500 \text{ hrs} \\ \text{Recovery} &: At least 1hr of recovery upper support of the property of the$	J) nder the standard removal from test chamber followed by the measurement within 2 hrs.	
17. Loading under o	damp heat		
Specified Value	TLH, TLF Type	Withstanding voltage: No abnormality Insulation resistance: No abnormality	
Test Method and Remarks	Applied voltage : Apply the following sp TLF9UA 25 TLF9UB 56	LF9U) urrent across windings (※except TLF9U) ecified voltage between windings. 50VAC DVDC ry under the standard removal from test chamber followed by the measurement within 2 hrs.	

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

18. Low temperatur	e life test		
Specified Value	TLH, TLF Type	TLF9U : Inductance change : Within $\pm 15\%$ TLH, TLF (except TLF9U) : Withstanding voltage : No abnormality Insulation resistance : No abnormality	
Test Method and Remarks	Duration : 500 hrs	erature : $-25\pm2^{\circ}$ C : $-40\pm2^{\circ}$ C ($\%$ TLF \cdot TLH) ion : 500 hrs	

		TLF9U : Inductance change : Within ±15%
Specified Value TLH, TLF Type	TLH, TLF Type	TLH, TLF (except TLF9U): Withstanding voltage: No abnormality
		Insulation resistance : No abnormality
	TLH, TL F:	
Test Method and	Temperature : 105±3°C (※ TLF·TLH)	
Remarks	Duration : 500 hrs	
	Recovery : At least 1hr of	recovery under the standard removal from test chamber followed by the measurement within 2 hrs.

LEADED COMMON MODE CHOKE COILS FOR DC AND SIGNAL LINES, LEADED COMMON MODE CHOKE COILS FOR AC LINES

■PRECAUTIONS

1. Circuit Design Operating environment 1. The products described in this specification are intended for use in general electronic equipment, (office supply equipment, telecommunications systems, measuring equipment, and household equipment). They are not intended for use in mission-critical Precautions equipment or systems requiring special quality and high reliability (traffic systems, safety equipment, aerospace systems, nuclear control systems and medical equipment including life-support systems) where product failure might result in loss of life, injury or damage. For such uses, contact TAIYO YUDEN Sales Department in advance. 2. PCB Design Design Precautions 1. Please design insertion pitches as matching to that of leads of the component on PCBs. ◆Design Technical 1. When Inductors are mounted onto a PC board, hole dimensions on the board should match the lead pitch of the component, if not, it will considerations cause breakage of the terminals or cracking of terminal roots covered with resin as excess stress travels through the terminal legs. 3. Soldering ◆Wave soldering 1. Please refer to the specifications in the catalog for a wave soldering. 2. Do not immerse the entire inductor in the flux during the soldering operation. Lead free soldering 1. When using products with lead free soldering, we request to use them after confirming of adhesion, temperature of resistance to Precautions soldering heat, etc. sufficiently. Recommended conditions for using a soldering iron Put the soldering iron on the land-pattern. Soldering iron's temperature – Below 350°C Duration – 3 seconds or less · The soldering iron should not directly touch the product. ◆Lead free soldering 1. If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently Technical degrade the reliability of the products. considerations ◆Recommended conditions for using a soldering iron If products are used beyond the range of the recommended conditions, heat stresses may deform the products, and consequently degrade the reliability of the products. 4. Cleaning Cleaning conditions Precautions 1. Please contact any of our offices for about a cleaning. 5. Handling ◆Handling 1. Keep the product away from all magnets and magnetic objects. Mechanical considerations 1. Please do not give the product any excessive mechanical shocks. Precautions 2. Please do not add any shock or power to a product in transportation. ◆Packing 1. Please do not give the product any excessive mechanical shocks. In loading, please pay attention to handling indication mentioned in a packing box (a loading direction / number of maximum loading / Handling 1. There is a case that a characteristic varies with magnetic influence. ◆Mechanical considerations Technical 1. There is a case to be damaged by a mechanical shock. considerations 2. There is a case to be broken by a fall. ◆Packing 1. There is a case that a lead route turns at by a fall or an excessive shock.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Storage conditions ◆Storage 1. To maintain the solderability of terminal electrodes and to keep the packing material in good condition, temperature and humidity in the storage area should be controlled. Recommended conditions Ambient temperature : 0~40°C Precautions Humidity: Below 70% RH The ambient temperature must be kept below 30°C. Even under ideal storage conditions, the solderbility of electrodes decreases gradually, so the products should be mounted within one year from the time of delivery. In case of storage over 6 months, solderability shall be checked before actual usage. **♦**Storage Technical 1. Under a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes considerations and deterioration of taping/packaging materials may take place.