INCH-POUND
MIL-M-38510/315D
27 October 2003
SUPERSEDING
MIL-M-38510/315C
17 JANUARY 1984

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, LOW-POWER SCHOTTKY TTL, COUNTERS, MONOLITHIC SILICON

Inactive for new design after 18 April 1997.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

1. SCOPE

- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, low power Schottky TTL, binary and decade counters. Two product assurance classes and a choice of case outlines/lead finish are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.3).
- 1.2 Part or Identifying Number (PIN). The PIN should be in accordance with MIL-PRF-38535, and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types should be as follows:

Device type	<u>Circuit</u>
01	Decade counter
02	4-bit binary counter
03	Synchronous 4-bit decade counter (asynchronous clear)
04	Synchronous 4-bit binary counter (asynchronous clear)
05	Synchronous 4-bit up/down decade counter
06	Synchronous 4-bit up/down binary counter
07	Synchronous 4-bit up/down decade counter (with clear)
08	Synchronous 4-bit up/down binary counter (with clear)
09	Synchronous 4-bit up/down binary counter (with mode control)
10	Divide-by-twelve counter
11	Synchronous 4-bit decade counter (with synchronous clear)
12	Synchronous 4-bit binary counter (with synchronous clear)
13	Synchronous 4-bit decade counter (with mode control)

1.2.2 <u>Device class</u>. The device class should be the product assurance level as defined in MIL-PRF-38535.

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, 3990 East Broad St., Columbus, OH 43216-5000, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at www.dodssp.daps.mil.

AMSC N/A FSC 5962

1.2.3 <u>Case outlines.</u> The case outlines should be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	Terminals	Package style
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
В	GDFP4-F14	14	Flat pack
Č	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Ē	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat pack
2	CQCC1-N20	20	Square leadless chip carrier
1.3 Absolute maximur	m ratings.		
Supply voltage ran	ge		-0.5 V dc to 7.0 V dc
	ə		
	re range		
	issipation, (P _D) <u>1</u> /:		
	5, 06, 07, 08		187 mW
	, 02, 10		
	, 04, 11, 12		
	, 13		
Lead temperature	(soldering, 10 seconds)		300°C
	e, junction to case (θ_{JC}) :		
Cases A, B, C, D			(See MIL-STD-1835)
	ure (T _J) <u>3</u> /		
1.4 Recommended or	perating conditions. 2/		
Maximum low leve	I output current (IoL)		4.0 mA
Supply voltage (Vo	cc)		4.5 V dc minimum to 5.5 V dc maximum
	el input voltage (V _{IH})		
	l input voltage (V _{IL})		
Normalized fanout	(each output)		
Types 01, 02, (05, 06, 07, 08, 10		10 maximum
Types 03, 04, 0	09, 11, 12, 13		
Low-level			10 maximum
High-level			20 maximum
Width of input cour	nt pulse, t _p (IN)		
Types 01, 02,			
Input A, res	et		15 ns minimum
Input B			30 ns minimum
			20 ns minimum
Width of reset puls	se, t _p (reset)		
Types 01, 02,	10		25 ns minimum
Count enable time			
Type 09, enabl	e		40 ns minimum

 $[\]underline{1}/$ Must withstand the added P_D due to short-circuit test (e.g., I_{OS}).

 $[\]underline{2}$ / A change of states on the U/ \overline{D} input for device types 09 and 13 is not recommended when the clock input is low. This may result in an erroneous count.

^{3/} Maximum junction temperature shall not be exceeded except for allowable short duration burn-in screening conditions in accordance with MIL-PRF-38535.

Input clock frequency, f _{clock}	
Types 01, 02, 10	
Input A	0 to 29 MHz
Types 03, 04, 11, 12	0 to 22 MHz
Types 09, 13	0 to 18 MHz
Types 07, 08	0 to 20 MHz
Types 05, 06	
Width of clock pulse, tw(clock)	
Types 03, 06, 09, 11, 12, 13	25 ns minimum
Types 04	30 ns minimum
Types 05	20 ns minimum
Width of clear pulse, tw (clear)	
Types 03, 04, 05, 06, 07, 08, 11, 12	20 ns minimum
Setup time, t _(setup)	
Types 03, 11, 12	
Enable P	25 ns minimum
Load	25 ns minimum
Clear (types 11 and 12 only)	20 ns minimum
Type 04	
Enable P	35 ns minimum
Load	35 ns minimum
Data inputs	
Types 03, 09, 11, 12, 13	20 ns minimum
Type 04	25 ns minimum
Types 07, 08	30 ns minimum
Type 05	
Data, L inputs	15 ns minimum
U/D input	
EP, ET inputs	
Type 06	13 113 111111111111111
Data, L inputs	25 ns minimum
_ ` · · ·	
U/D input	
EP, ET, inputs	25 ns minimum
Hold time at any input, t _(hold)	0
Types 09, 13	
Types 07, 08	10 ns minimum
Types 05, 06	5
Data, EP, ET inputs	
L, U/D inputs	
Types 03, 04, 11, 12	
Types 03, 04, 11, 12 t _W (clear)	
Case operating temperature range (T _c)	-55°C to +125°C

2. APPLICABLE DOCUMENTS

2.1 <u>General</u>. The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are

2.2 Government documents.

2.2.1 <u>Specifications and Standards</u>. The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil;quicksearch/ or www.dodssp.daps.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 Qualification. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.4).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
- 3.3.1 <u>Terminal connections and logic diagrams</u>. The terminal connections and logic diagrams shall be as specified on figures 1 and 2.
 - 3.3.2 <u>Truth tables.</u> The truth tables and logic equations shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuits</u>. The schematic circuits shall be _maintained by the manufacturer and made available to the qualifying activity and the preparing activity (DSCC-VAS) upon request.
 - 3.3.5 Case outlines. The case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. The lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).

- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table I, and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements.</u> The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
 - 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 12 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and quality conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535, appendix B.

TABLE I. <u>Electrical performance characteristics</u>.

Test	Symbol	Conditions	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Low-level output voltage	V _{OL}	$V_{CC} = 4.5 \text{ V}, \ V_{IH} = 2.0 \text{ V} $ $V_{IL} = 0.7 \text{ V}, \ I_{OL} = 4 \text{ mA} \ \underline{1}/$	All	-	0.4	V
High-level output voltage	V _{OH}	$V_{CC} = 4.5 \text{ V}, \ V_{IH} = 2.0 \text{ V} $ $V_{IL} = 0.7 \text{ V}, \ I_{OH} = -400 \text{m } \mu\text{A}$	All	2.5	-	V
Input clamp voltage	V _{IC}	$T_C = 25^{\circ}C$, $V_{CC} = 4.5 \text{ V}$ $I_{IN} = -18 \text{ mA}$	All	-	-1.5	V
Low-level input current at reset inputs	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01, 02, 10	-30	-400	μΑ
Low-level input current at input A	I _{IL2}		01, 02, 10	-0.5	-2.4	mA
Low-level input current	I _{IL3}		01, 10	-0.4	-3.2	mΑ
at input B			02	-0.4	-1.6	mA
Low-level input current at data, clear, EnP	I _{IL4}		03, 04	-30	-400	μΑ
Low-level input current at data, EnP	I _{IL4}		01, 12	-30	-400	μΑ
Low-level input current at clear	I _{IL4}		01, 12	-30	-760	μΑ
Low-level input current at load	I _{IL5}		03, 04, 11, 12	-30	-800	μΑ
Low-level input current at EnT	I _{IL5}		03, 04, 11, 12	-30	-860	μΑ
Low-level input current at clock	I _{IL6}		03, 04, 11, 12	0	630	mA
Low-level input current at EnG	I _{IL7}		09 13	15 36	-1.08 -1.08	mA
Low-level input current at data, clock, down/up	I _{IL8}		09, 13	-120	-400	μΑ
Low-level input current at load	I _{IL8}		09, 13	-100	-400	μΑ
Low-level input current at data	I _{IL9}		07, 08	-100	-400	μΑ
Low-level input current at load	I _{IL10}		07, 08	-100	-400	μΑ
Low-level input current at clear, count up, count down	I _{IL11}		07, 08	-120	-400	μΑ
Low-level input current at data	I _{IL12}		05, 06	-3.0	-400	μΑ
Low-level input current at clock, down/up	I _{IL13}		05, 06	-135	-370	μΑ
Low-level input current at EP	I _{IL14}		05, 06	-150	-385	μΑ
Low-level input current at ET	I _{IL15}		05, 06	-280	-760	μΑ

See footnotes at end of table.

TABLE I. <u>Electrical performance characteristics.</u>

Test	Symbol	Conditions	Device	Lin	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
High-level input current at reset inputs	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01, 02 10	-	20	μΑ
High-level input current at reset inputs	I _{IH2}	$V_{CC} = 5.5 \text{ V}, \ V_{IN} = 5.5 \text{ V}$	01, 02 10	-	100	μА
High-level input current at input A	I _{IH3}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	01, 02 10	-	80	μΑ
High-level input current at input A	I _{IH4}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 5.5 \text{ V}$	01, 02, 10	-	400	μΑ
High-level input current at input B	I _{IH5}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 2.7 \text{ V}$	01 02, 10	-	160 80	μΑ
High-level input current at input B	I _{IH6}	$V_{CC} = 5.5 \text{ V}, \ V_{IN} = 5.5 \text{ V}$	01 02, 10	-	800 400	μΑ
High-level input current at load, clock, EnT	I _{IH9}	$V_{CC} = 5.5 \text{ V}, \ V_{IN} = 2.7 \text{ V}$	03, 04, 11, 12	-	40	μΑ
High-level input current at load, clock, EnT	I _{IH10}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 5.5 \text{ V}$	03, 04, 11, 12	-	200	μΑ
High-level input current at data, EnP	I _{IH11}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 2.7 \text{ V}$	03, 04, 11, 12	-	20	μΑ
High-level input current at data, EnP	I _{IH12}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 5.5 \text{ V}$	03, 04, 11, 12	-	100	μΑ
High-level input current at clear	I _{IH13}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	03, 04, 11, 12	-	20 40	μΑ
High-level input current at clear	I _{IH14}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 5.5 \text{ V}$	03, 04 11, 12	-	100 200	μΑ
High-level input current at EnG	I _{IH15}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	09, 13	-	60	μА
High-level input current at EnG	I _{IH16}	$V_{CC} = 5.5 \text{ V}, \ \ V_{IN} = 5.5 \text{ V}$	09, 13	-	300	μΑ
High-level input current at data, load, clear, count up, count down, clock, down/up	I _{IH17}	V _{CC} = 5.5 V, V _{IN} = 2.7 V	05, 06 07, 08 09, 13	-	20	μА
High-level input current at data, load, clear, count up, count down, clock, down/up	I _{IH18}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	05, 06 07, 08 09, 13	-	100	μА
High-level input current at ET	I _{IH19}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.7 \text{ V}$	05, 06	•	40	μΑ

See footnotes at end of table.

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} \text{ - Continued.}$

Test	Symbol	Conditions	Device	Lim	its	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
High-level input current at ET	I _{IH20}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	05, 06	-	200	μА
Short circuit output current	los	V _{CC} = 5.5 V <u>2</u> /	All	-15	-130	mA
Supply current	Icc	V _{CC} = 5.5 V	01,02,10		15	mA
			05,06,07,08		34	
			09, 13		35	
High-level supply current	Іссн	V _{CC} = 5.5 V, <u>3</u> /	03, 04, 11, 12	-	31	mA
High-level supply current	Іссн	V _{CC} = 5.5 V, <u>3</u> /	03, 04 11, 12	-	31	mA
Low-level supply current	I _{CCL}	V _{CC} = 5.5 V, <u>4</u> /	03, 04 11, 12	-	32	mA
Maximum input A, clock, or count up frequency	F _{MAX}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, \pm 10\%$ $R_L = 2 \text{ k}\Omega$	05, 06 01, 02, 10	25 29	-	MHz
		1/(- 2 1/32	03, 04, 07, 08, 11, 12	22		
			09, 13	18	-	
Propagation delay time, high to low, A to Q _C	t _{PHL1}		01,02,10	3	81	ns
Propagation delay time, low to high, A to Q _C	t _{PLH1}	-	01, 10	3	74	ns
ion to riigii, 77 to Q			02	3	74	
Propagation delay time, high to low, B to Q _D	t _{PHL2}		01, 10	3	56	ns
			02	3	78	
Propagation delay time, low to high, B to Q _D	t _{PLH2}		01, 10	3	52	ns
		_	02	3	78	
Propagation delay time, low to high, clock to carry	t _{PLH4}		03, 04, 11, 12	3	56	ns
Propagation delay time, high to low, clock to carry	t _{PHL4}		03, 04, 11, 12	3	56	ns

See footnotes at end of table.

 ${\sf TABLE\ I.\ } \underline{\sf Electrical\ performance\ characteristics} \text{ - Continued.}$

Test	Symbol	Conditions	Device	Lim	nits	Unit
		-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Propagation delay time, low to high, clock to Q	t _{PLH5}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, \pm 10\%$ $R_L = 2 \text{ k}\Omega$	03, 04, 11, 12	3	41	ns
Propagation delay time, high to high, clock to Q	t _{PHL5}		03, 04, 11, 12	3	45	ns
Propagation delay time, low to high, clock to Q	t _{PLH5}		05, 06	3	26	ns
Propagation delay time, high to low, clock to Q	t _{PHL5}		05	3	26	ns
riigii to low, clock to Q			06	3	36	
Propagation delay time, low to high, clock (data) to Q	t _{PLH6}		03, 04, 11, 12	3	42	ns
Propagation delay time, high to low, clock (data) to Q	t _{PHL6}		03, 04, 11, 12	3	48	ns
Propagation delay time, low to high, EnT to carry	t _{PLH7}		03, 04, 11, 12	3	28	ns
Propagation delay time, high to low, EnT to carry	t _{PHL7}		03, 04, 11, 12	3	28	ns
Propagation delay time, low to high, ET to RC	t _{PLH7}		05	3	18	ns
low to high, ET to RC			06	3	28	
Propagation delay time, high to low, ET to RC	t _{PHL7}		05	3	28	ns
			06	3	32	
Propagation delay time, high to low, clear to Q	t _{PHL8}		03, 04, 11, 12	3	46	ns
Propagation delay time, low to high, load to Q	t _{PLH8}		07, 08	3	63	ns
Propagation delay time, high to low, load to Q	t _{PHL10}		07, 08	3	63	ns
Propagation delay time,	t _{PLH9}		07, 08	3	60	ns
low to high, counts up and down to Q, U/\overline{D} to RC			05	3	26	
			06	3	32	

TABLE I. <u>Electrical performance characteristics</u> - Continued.

Test	Symbol	Conditions	Device	Lim	its	Unit
	-	-55°C ≤ T _C ≤ +125°C unless otherwise specified	types	Min	Max	
Propagation delay time, high to low, counts up	t _{PHL11}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF}, \pm 10\%$	07, 08	3	73	ns
and down to Q, U/\overline{D} to RC		$R_L = 2 k\Omega$	05	3	33	
·		_	06	3	37	
Propagation delay time, high to low, clear to Q	t _{PHL12}		07, 08	3	56	ns
Propagation delay time, low to high, load to Q	t _{PLH10}		09, 13	3	53	ns
Propagation delay time, high to low, load to Q	t _{PHL13}		09, 13	3	77	ns
Propagation delay time, low to high, clock to Q	t _{PLH11}		09, 13	3	41	ns
Propagation delay time, high to low, clock to Q	t _{PHL14}		09, 13	3	57	ns
Propagation delay time, low to high, clock to Max Min	t _{PLH12}		09, 13	3	66	ns
Propagation delay time,	t _{PLH12}		05	3	35	ns
low to high, clock to ripple carry			06	3	38	
Propagation delay time, high to low, clock to Max Min	t _{PHL15}		09, 13	3	80	ns
Propagation delay time,	t _{PHL15}		05	3	37	ns
high to low, clock to ripple carry			06	3	40	

 $[\]underline{1}$ / Use $I_{OL} + I_{IL3(Max)}$ for V_{OL} test on Q_A .

 $[\]underline{2}$ / Not more than one output should be shorted at a time.

^{3/} I_{CCH} is measured: (a) With the load input high; and (b) Then again with the load input low with all other inputs high and all outputs open.

 $[\]underline{4}$ / I_{CCL} is measured: (a) With the clock input high; and (b) Then again with the clock input low with all other inputs low and all outputs open.

TABLE II. Electrical test requirements.

	Subgroups	(see table III)
MIL-PRF-38535 test requirements	Class S	Class B
	devices	devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7,	1*, 2, 3,
	9, 10, 11	7, 9
Group A test requirements	1, 2, 3, 7, 8,	1, 2, 3, 7, 8,
	9, 10, 11	9, 10, 11
Group B test when using the method 5005	1, 2, 3, 7	N/A
QCI option	8, 9, 10, 11	
Group C end-point electrical		1, 2, 3
parameters	1, 2, 3, 7, 8	
	9, 10, 11	
Group D end-point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1.

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535 .
- 4.4 <u>Technology Conformance inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
 - 4.4.1 Group A inspection. Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II MIL-PRF-38535.
 - 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End-point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods of inspection. Methods of inspection shall be specified and as follows:
- 4.5.1 <u>Voltage and current.</u> All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional and positive when flowing into the referenced terminal.

	Device	type 01	Device	type 02	Device	type 03	Device	type 04
				CASE	S			
Pin	A, B, C,	2	A, B, C,	2	E,F	2	E,F	2
number	and D		and D					
1	BD INPUT	N/C	INPUT B	N/C	CLEAR	N/C	CLEAR	N/C
2	$R_0^{(1)}$	BD INPUT	R _{O(1)}	INPUT B	CLOCK	CLEAR	CLOCK	CLEAR
3	Ro ⁽²⁾	$R_0^{(1)}$	R _{O(2)}	Ro ⁽¹⁾	INPUT A	CLOCK	INPUT A	CLOCK
4	NC	$R_0^{(2)}$	NC	R _O ⁽²⁾	INPUT B	INPUT A	INPUT B	INPUT A
5	V_{CC}	N/C	V_{CC}	N/C	INPUT C	INPUT B	INPUT C	INPUT B
6	R ₉₍₁₎	N/C	NC	N/C	INPUT D	N/C	INPUT D	N/C
7	R ₉₍₂₎	N/C	NC	N/C	ENABLE P	INPUT C	ENABLE P	INPUT C
8	OUTPUT C	V_{CC}	OUTPUT C	V_{CC}	GND	INPUT D	GND	INPUT D
9	OUTPUT B	R ₉ ⁽¹⁾	OUTPUT B	N/C	LOAD	ENABLE P	LOAD	ENABLE P
10	GND	$R_9^{(2)}$	GND	N/C	ENABLE T	GND	ENABLE T	GND
11	OUTPUT D	N/C	OUTPUT D	N/C	Q_D	N/C	Q_D	N/C
12	OUTPUT A	OUTPUT C	OUTPUT A	OUTPUT C	Q_C	LOAD	Q_C	LOAD
13	NC	OUTPUT B	NC	OUTPUT B	Q _B	T	Q_B	Т
14	INPUT A	GND	INPUT A	GND	Q_A	Q_D	Q_A	Q_D
15		N/C		N/C	CARRY	Q_{C}	CARRY	Q_{C}
					OUTPUT		OUTPUT	
16		OUTPUT D		OUTPUT D	V _{CC}	N/C	V_{CC}	N/C
17		N/C		N/C		Q_{B}		Q _B
18		OUTPUT A		OUTPUT A		Q_A		Q_A
19		N/C		N/C		CARRY		CARRY
						OUTPUT		OUTPUT
20		INPUT A		INPUT A		V_{CC}		V_{CC}

FIGURE 1. Terminal connections.

	Davias	tura 05	Davisa	t a. OC	Davisa	turn = 0.7	Davisa	t
	Device	type 05	Device	type 06	SES	type 07	Device	type 08
Б.					ı			
Pin number	E, F	2	E, F	2	E, F	2	E, F	2
1	U/D	N/C	U/D	N/C	DATA B INPUT	N/C	DATA B INPUT	N/C
2	CK	U/D	CK	U/D	Q_{B}	DATA B INPUT	Q_{B}	DATA B INPUT
3	INPUT A	CK	INPUT A	CK	Q_A	Q _B	Q_A	Q _B
4	INPUT B	INPUT A	INPUT B	INPUT A	COUNT DOWN	Q _A	COUNT DOWN	Q _A
5	INPUT C	INPUT B	INPUT C	INPUT B	COUNT UP	COUNT DOWN	COUNT UP	COUNT DOWN
6	INPUT D	N/C	INPUT D	N/C	Q _C	N/C	Qc	N/C
7	ENABLE	INPUT C	ENABLE	INPUT C	Q_D	COUNT	Q_D	COUNT
	Р		Р			UP		UP
8	GND	INPUT D	GND	INPUT D	GND	Q_{C}	GND	Q_{C}
9	LOAD	ENABLE	LOAD	ENABLE	DATA	Q_D	DATA	Q_D
		Р		Р	D		D	
10	ENABLE	GND	ENABLE	GND	DATA	GND	DATA	GND
	Т		Т		С		С	
11	Q_D	N/C	Q_D	N/C	LOAD	N/C	LOAD	N/C
12	Q _C	LOAD	Q_C	LOAD	CARRY	DATA D	CARRY	DATA D
13	Q _B	ENABLE T	Q _B	ENABLE T	BORROW	DATA C	BORROW	DATA C
14	Q _A	Q _D	Q _A	Q _D	CLEAR	LOAD	CLEAR	LOAD
15	RIPPLE CARRY OUTPUT	Q _C	RIPPLE CARRY OUTPUT	Q _C	DATA A	CARRY	DATA A	CARRY
16	V_{CC}	N/C	V _{CC}	N/C	V _{CC}	N/C	V _{CC}	N/C
17		Q _B		Q_B		BORROW		BORROW
18		Q _A		Q _A		CLEAR		CLEAR
19		RC		RC		DATA		DATA
		OUTPUT		OUTPUT		Α		А
20		V_{CC}		V _{CC}		V _{CC}		V _{CC}

FIGURE 1. <u>Terminal connections</u> - Continued.

	Device t	vpe 09	Device	type 10	Device t	vpe 11	Device	type 12
		CASES						-7F
Pin number	E, F	2	A,B C, and D	2	E, F	2	E, F	2
1	DATA B	N/C	INPUT BC	N/C	CLEAR	N/C	CLEAR	N/C
2	Q_{B}	DATA B	NC	INPUT BC	CLOCK	CLEAR	CLOCK	CLEAR
3	Q_A	Q _B	NC	N/C	INPUT A	CLOCK	INPUT A	CLOCK
4	ENABLE G	Q _A	NC	N/C	INPUT B	INPUT A	INPUT B	INPUT A
5	DOWN UP	ENABLE G	V _{CC}	N/C	INPUT C	INPUT B	INPUT C	INPUT B
6	Q_{C}	N/C	R _{O(1)}	N/C	INPUT D	N/C	INPUT D	N/C
7	Q_D	DOWN UP	R _{O(2)}	N/C	ENABLE P	INPUT C	ENABLE P	INPUT C
8	GND	Qc	OUTPUT D	V _{CC}	GND	INPUT D	GND	INPUT D
9	DATA D	Q_D	OUTPUT C	R ₀ ⁽¹⁾	LOAD	ENABLE P	LOAD	ENABLE P
10	DATA C	GND	GND	Ro ⁽²⁾	ENABLE T	GND	ENABLE T	GND
11	LOAD	N/C	OUTPUT B	N/C	Q_D	N/C	Q_D	N/C
12	MAX/ MIN	DATA D	OUTPUT A	OUTPUT D	$Q_{\mathbb{C}}$	LOAD	Q_{C}	LOAD
13	RIPPLE CLOCK	DATA C	NC	OUTPUT C	Q_{B}	Т	Q_{B}	Т
14	CLOCK	LOAD	INPUT A	GND	Q_A	Q_D	Q _A	Q_D
15	DATA A	MAX/ MIN		N/C	CARRY OUTPUT	Q _C	CARRY OUTPUT	Q_{C}
16	V_{CC}	N/C		OUTPUT B	V _{CC}	N/C	V _{CC}	N/C
17		R _C		N/C		Q_B		Q_B
18		CLOCK		OUTPUT A		Q_A		Q_A
19		DATA A		N/C		CARRY		CARRY
						OUTPUT		OUTPUT
20		V _{CC}		INPUT A		V _{CC}		V _{CC}

FIGURE 1. <u>Terminal connections</u> - Continued.

	Device type 13	
	CASES	
Pin number	E, F	2
1	DATA B	N/C
2	Q _B	DATA B
3	Q_A	Q_{B}
4	ENABLE G	Q_A
5	DOWN UP	ENABLE G
6	Q _C	N/C
7	Q _D	DOWN UP
8	GND	Q _C
9	DATA D	Q_D
10	DATA C	GND
11	LOAD	N/C
12	MAX/ MIN	DATA D
13	RIPPLE CLOCK	DATA C
14	CLOCK	LOAD
15	DATA A	MAX/ MIN
16	V _{CC}	N/C
17		R_{C}
18		CLOCK
19		DATA A
20		V_{CC}

FIGURE 1. Terminal connections - Continued

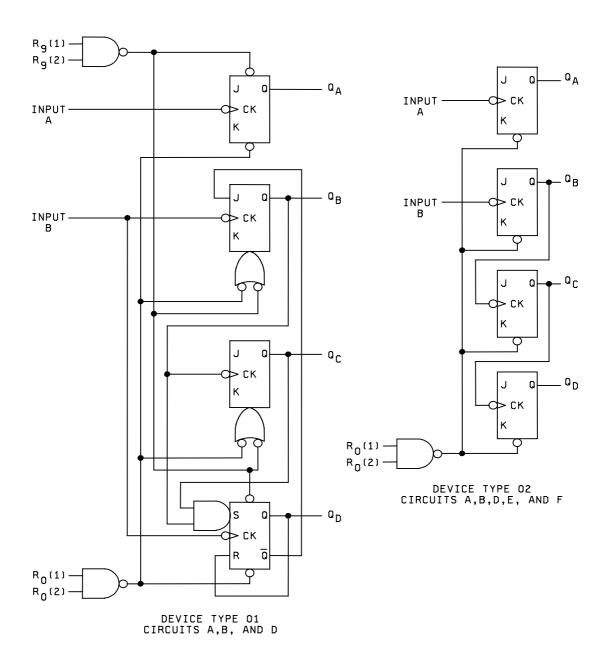


FIGURE 2. Logic diagrams

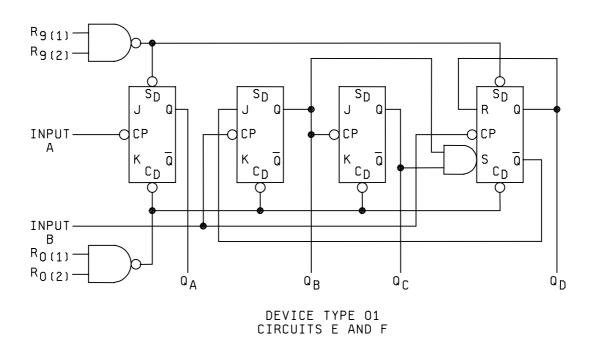


FIGURE 2. <u>Logic diagrams</u> – Continued.

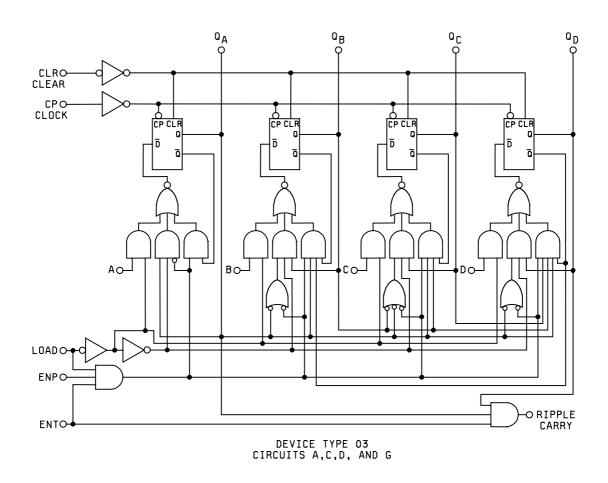


FIGURE 2. <u>Logic diagrams</u> – Continued.

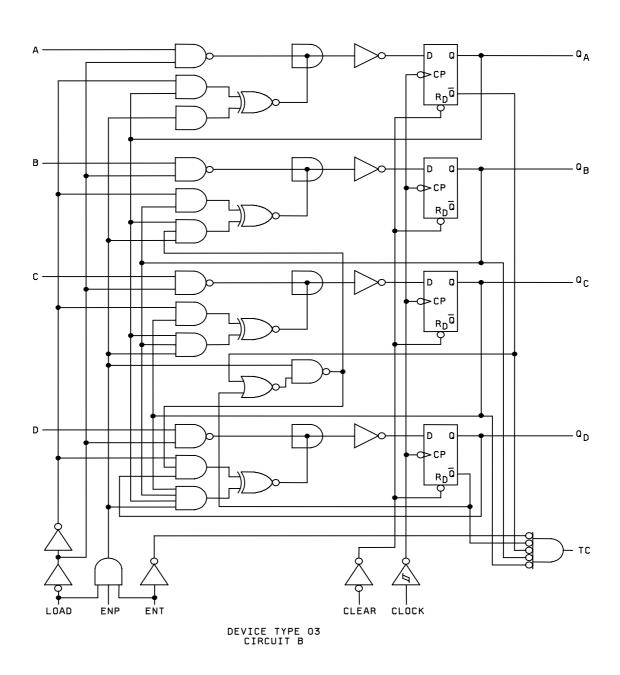


FIGURE 2. <u>Logic diagrams</u> – Continued.

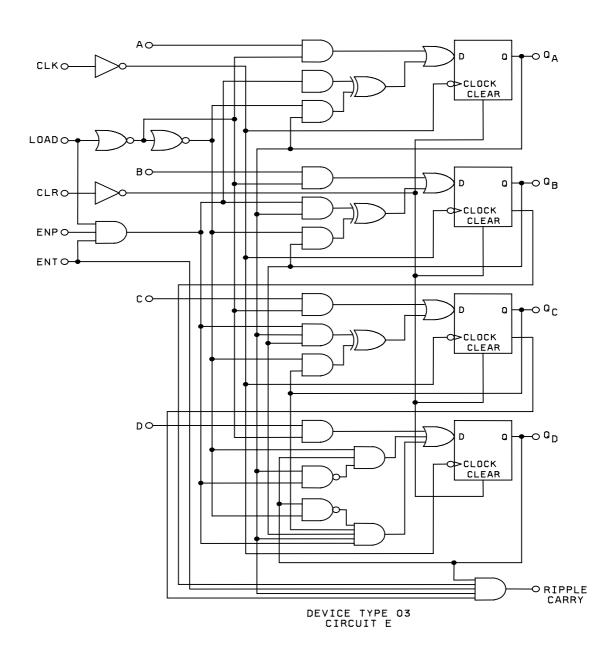


FIGURE 2. Logic diagrams – Continued.

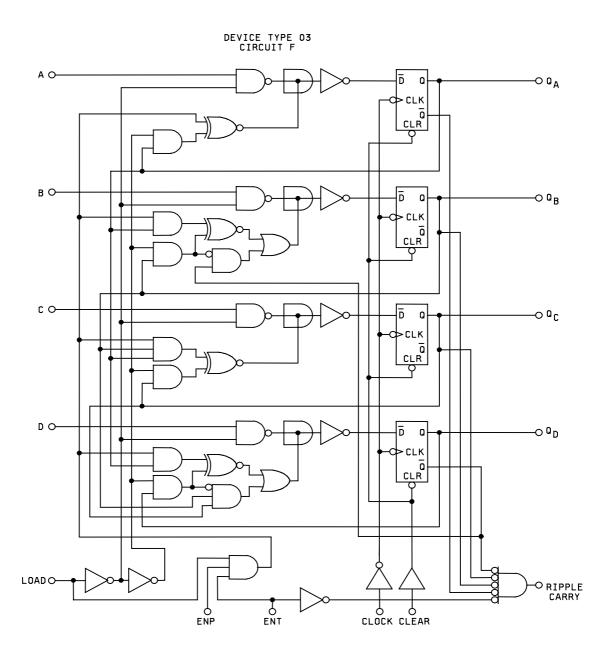


FIGURE 2. <u>Logic diagrams</u> – Continued.

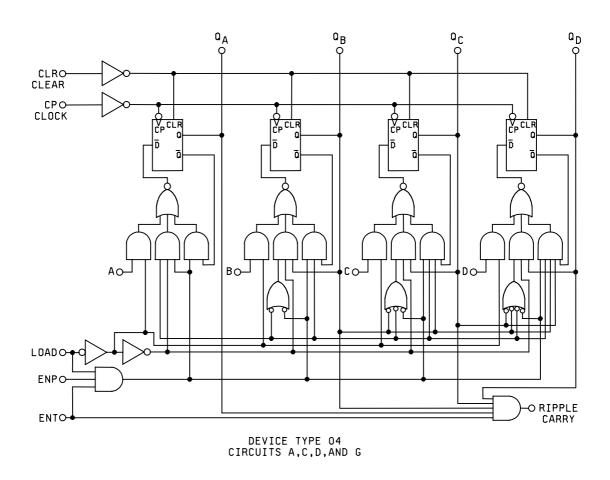


FIGURE 2. Logic diagrams - Continued.

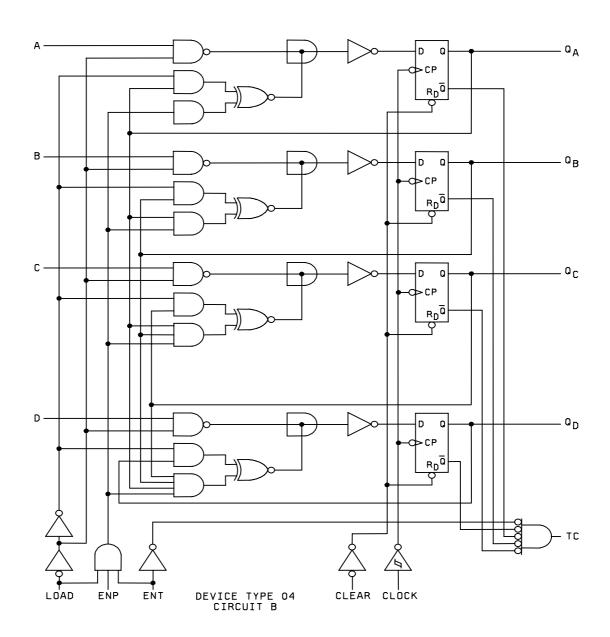


FIGURE 2. <u>Logic diagrams</u> – Continued.

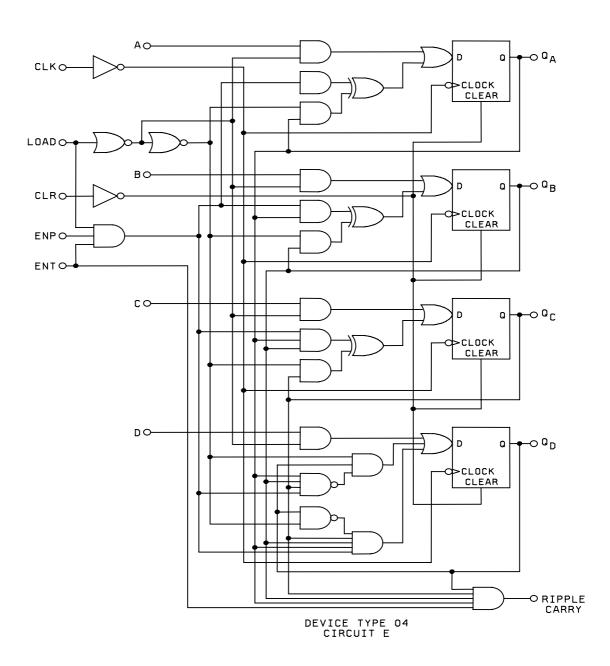


FIGURE 2. Logic diagrams – Continued.

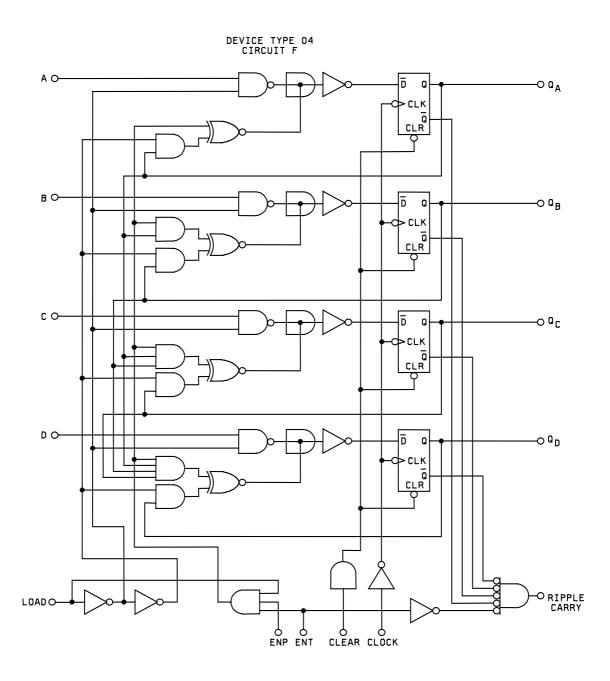


FIGURE 2. Logic diagrams – Continued.

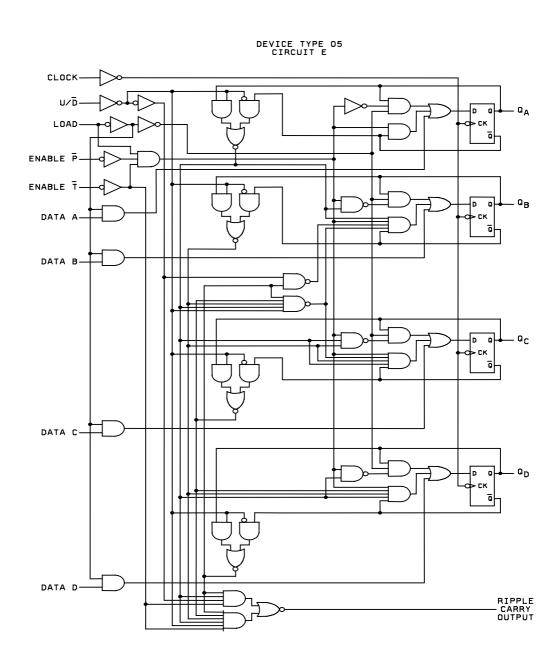


FIGURE 2. Logic diagrams – Continued.

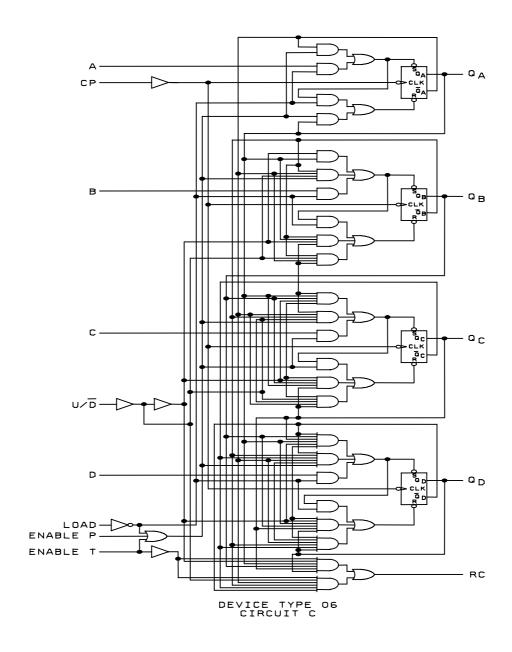


FIGURE 2. <u>Logic diagrams</u> – Continued.

DEVICE TYPE 06 CIRCUIT E CLOCK-- QA LOAD ENABLE P ENABLE T - QB DATA A DATA B-DATA C-_ a_D DATA D-RIPPLE - CARRY OUTPUT

FIGURE 2. Logic diagrams – Continued.

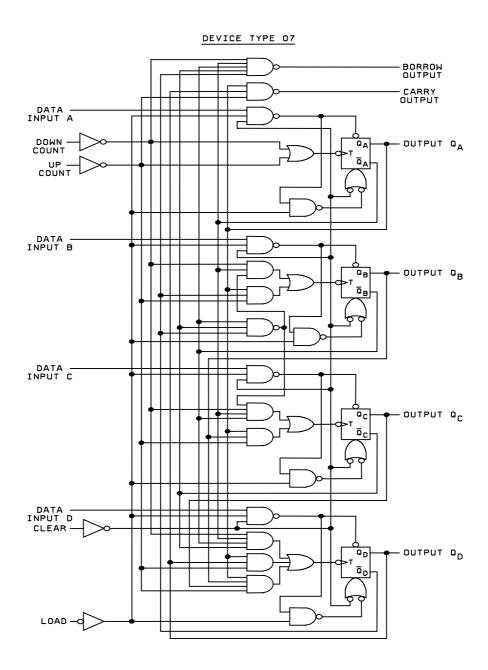


FIGURE 2. Logic diagrams - Continued.

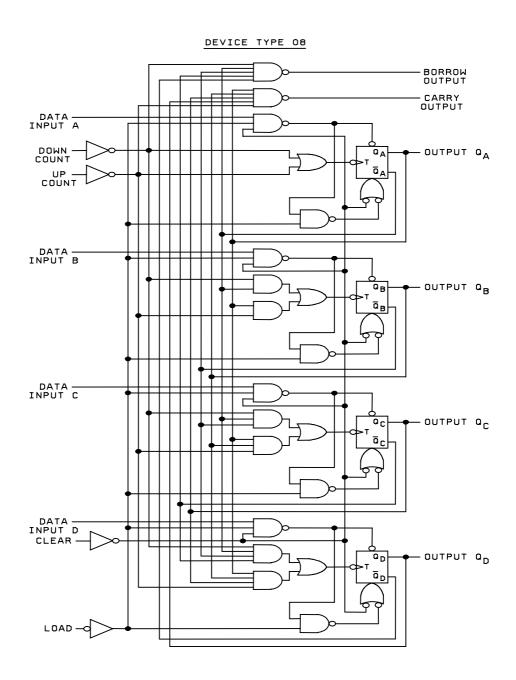


FIGURE 2. Logic diagrams - Continued.

FIGURE 2. Logic diagrams - Continued.

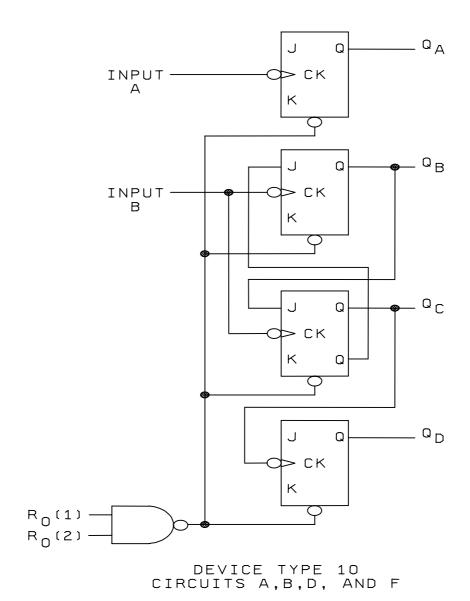
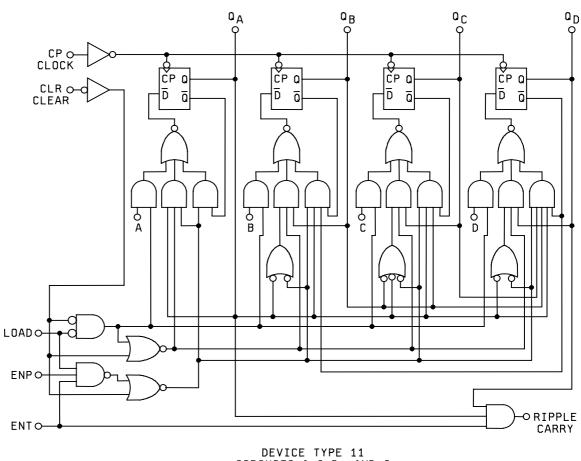



FIGURE 2. Logic diagrams – Continued.

DEVICE TYPE 11 CIRCUITS A,C,D, AND G

FIGURE 2. <u>Logic diagrams</u> – Continued.

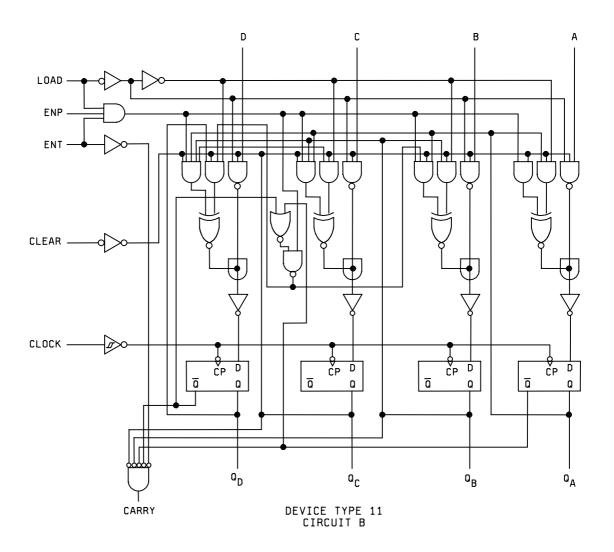


FIGURE 2. Logic diagrams - Continued.

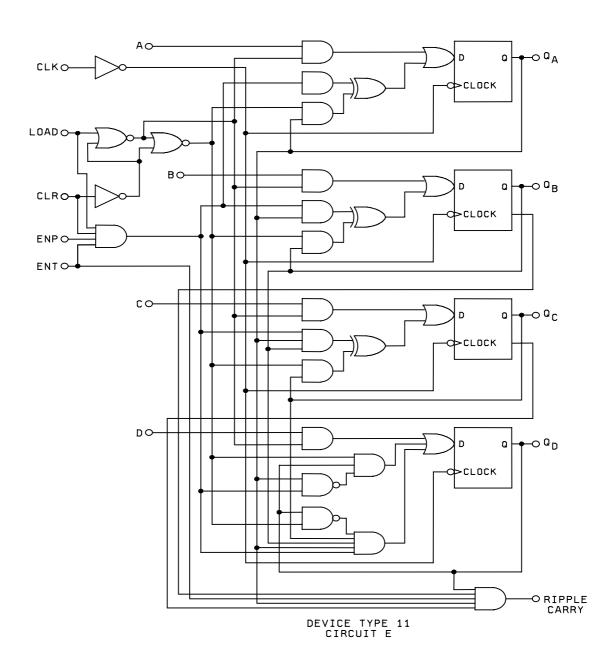


FIGURE 2. Logic diagrams - Continued.

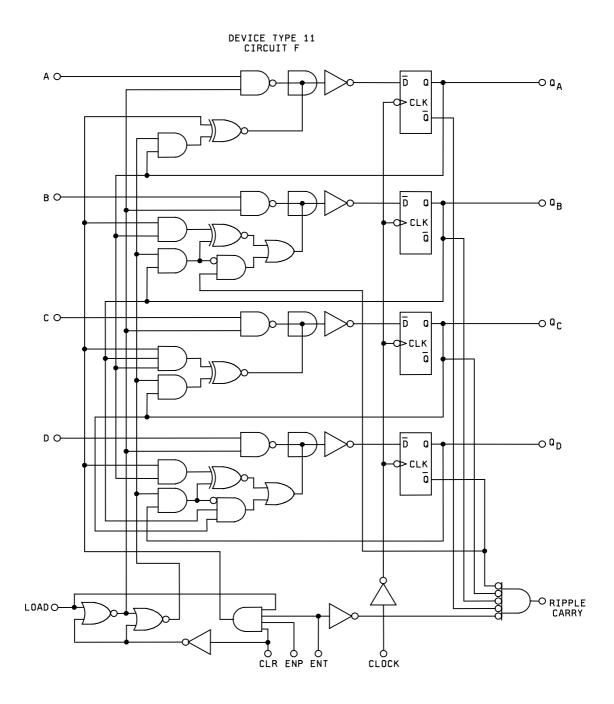


FIGURE 2. <u>Logic diagrams</u> – Continued.

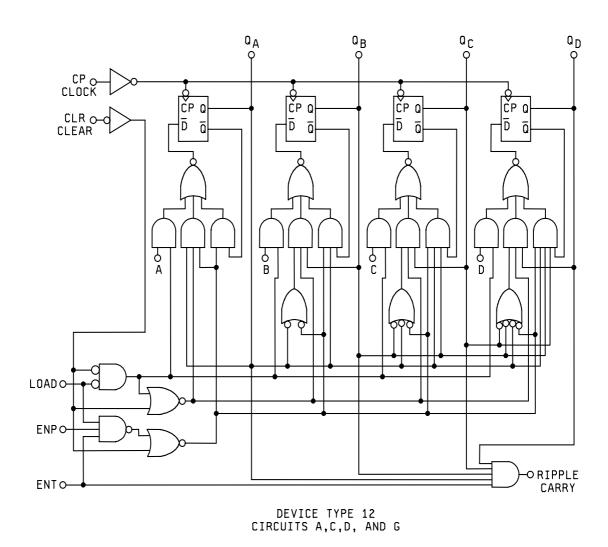


FIGURE 2. <u>Logic diagrams</u> – Continued.

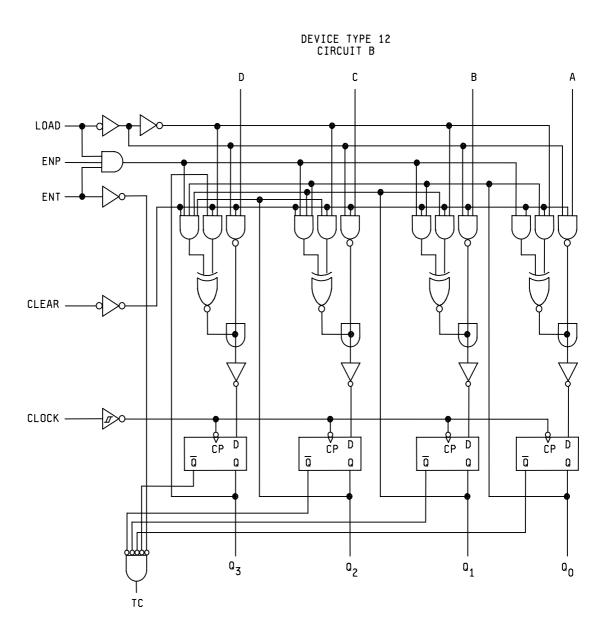


FIGURE 2. <u>Logic diagrams</u> – Continued.

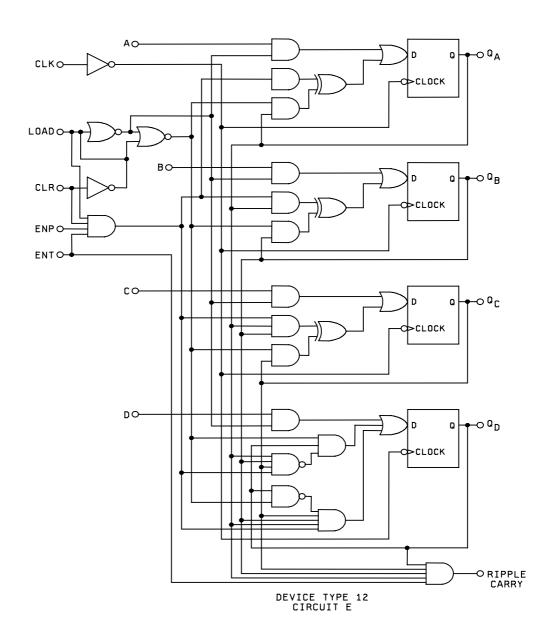


FIGURE 2. <u>Logic diagrams</u> – Continued.

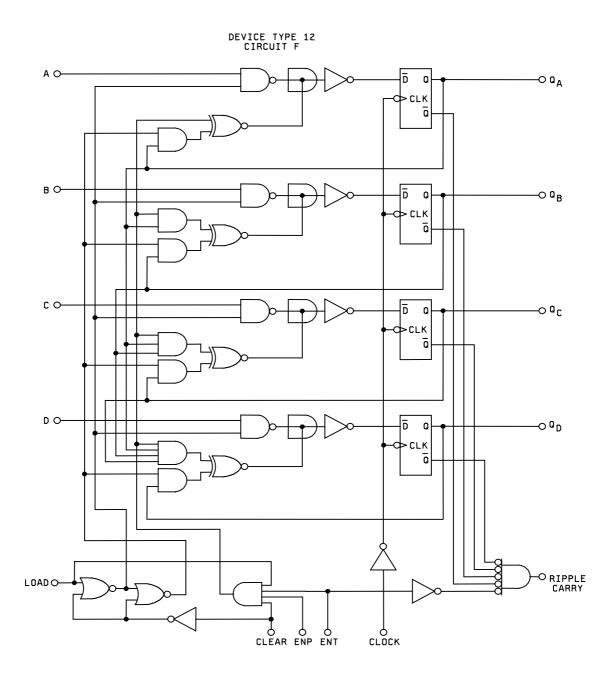


FIGURE 2. Logic diagrams – Continued.

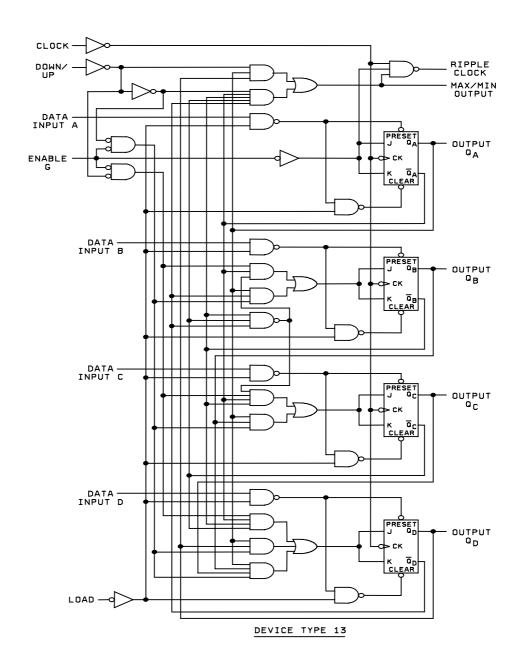


FIGURE 2. Logic diagrams - Continued.

DEVICE TYPE 01

BCD COUNT SEQUENCE (See Note A)

OUTPUT COUNT Q_A Q_D Q_B 0 1 Н L 2 L Н 3 L L Н Н 4 L Н 5 Н Н 6 L Н Н L 7 Н Н L Н 8 Н L L L 9 Н Н

BI-QUINARY (5-2) (See Note B)

COUNT		OUT	PUT	
COUNT	Q_A	Q_D	Q_{C}	Q_B
0	L	L	L	L
1	Ш	Ш	L	Ι
2	Ш	Ш	Н	Ш
3	Ш	Ш	Н	Ι
4	Ш	Ι	L	Ш
5	Ι	Ш	L	Ш
6	Ι	L	L	Ι
7	Τ	L	Н	Ĺ
8	Н	L	Н	Н
9	Н	Н	Ĺ	Ĺ

RESET/COUNT FUNCTION TABLE

	DECETION	VIDLITO		OUTPUT						
	RESET II	NPUIS		001701						
R ₀₍₁₎	R ₀₍₂₎	R ₉₍₁₎	$R_{9(2)}$	Q_D	Q_{C}	Q_B	Q_A			
Н	Н	L	Χ	L	L	L	L			
Н	Н	Х	L	L	L	L	L			
Χ	Х	Н	Н	Н	L	L	Н			
Χ	L	Х	L		COL	JNT				
L	Х	L	Χ		COL	JNT				
L	X	Х	L	COUNT						
Х	L	L	Х	COUNT						

 $\begin{array}{ccc} \text{NOTES:} & \text{A. Output } Q_A \text{ is connected to input B for BCD count.} \\ & \text{B. Output } Q_D \text{ is connected to input A for bi-quinary count.} \end{array}$

FIGURE 3. Truth tables.

DEVICE TYE 02

COUNT SEQUENCE (See Note)

COUNT		OUT	PUT	
COUNT	Q_D	Q_{C}	Q_B	Q_A
0	L	L	L	L
1	L	L	L	Н
2	L	L	Н	L
3	L	L	Н	Н
4	L	Н	L	L
5	L	Н	L	Н
6	L	Н	Н	L
7	L	Н	Н	Н
8	Н	L	L	L
9	Ι	L	L	Н
10	Ι	L	Н	L
11	Ι	L	Н	Н
12	Η	Н	Ĺ	L
13	Η	Н	Ĺ	Н
14	Η	Н	Н	L
15	Н	Н	Н	Н

DEVICE TYPE 10

COUNT SEQUENCE (See Note)

COUNT		OUT	PUT	
COUNT	Q_D	Q_{C}	Q_B	Q_A
0	L	L	L	L
1	L	L	L	Η
2	L	L	Н	L
3	L	L	Н	Η
4	L	Н	L	L
5	L	Н	L	Н
6	Н	L	L	L
7	Н	L	L	Н
8	Н	L	Н	L
9	Н	L	Н	Η
10	Н	Н	Ĺ	L
11	Н	Н	Ĺ	Н

RESET/COUNT FUNCTION TABLE

RESET/COUNT FUNCTION TABLE

RESET II	NPUTS	OUTPUT						
R ₀₍₁₎	R ₀₍₂₎	Q_D	Q_{C}	Q_B	Q_A			
Н	Н	L	L					
L	Х	COUNT						
Х	L		CO	UNT				

NOTE: Output Q_A is connected to input B.

NOTE: Output Q_A is connected to input B.

FIGURE 3. Truth tables.

SYNCHRONOUS TRUTH TABLE, DEVICE TYPES 3 AND 11

	Input at time t _n									Outputs at time t _{n+1}			
Clock	Enable P	Enable T	Load	Α	В	С	D	Clear	Q_{A}	Q _B	Qc	Q_D	Carry output
CP	L	Х	Н	Χ	Χ	Χ	Х	Н	NC	NC	NC	NC	NC
CP	Х	L	Н	Х	Χ	Х	Χ	Н	NC NC NC L			L	
CP	Н	Н	Н	Х	Χ	Х	Χ	Н	Pre	evious c	ount plu	s 1	H if count = 9
										(not	te 1)		L if count < 9
CP	X	Н	L	Χ	Χ	X	Χ	Н	Α	В	С	D	H if count = 9
													L if count < 9
CP	Χ	Ĺ	L	Χ	Χ	Χ	Χ	Н	Α	В	С	D	L
CP	X	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	L	L

ASYNCHRONOUS TRUTH TABLE, DEVICE TYPE 3

	Inputs at time t _n									Outp	uts at t	ime t _n	+1
Clock	Clock Enable Enable Load A B C D Clear							Q_A	Q _B	Qc	Q_D	Carry output	
X	X								L	L	L	Ĺ	L

NOTES:

- 1. See up count sequence table.
- L = V_{IL} for inputs, V_{0L} for outputs.
 H = V_{IH} for inputs, V_{0H} for outputs.
 X = V_{IH} or V_{IL}.

- 5. CP = Clock pulse.
- 6. NC = No change.

UP COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Q _C	Q _D (MSB)
L	L	L	L
Н	L	L	L
L	Н	L	L
Н	Н	L	L
L	L	Н	L
Н	L	Н	L
L	Н	Н	L
Н	Н	Н	L
L	L	L	Н
Н	Ĺ	Ĺ	Н

FIGURE 3. <u>Truth tables</u> – Continued.

SYNCHRONOUS TRUTH TABLE, DEVICE TYPES 4 AND 12

	Input at time t _n									Outputs at time t _{n+1}			
Clock	Enable P	Enable T	Load	Α	В	O	D	Clear	Q_A	Q_{B}	Q _C	Q_D	Carry output
CP	Ĺ	X	Н	Χ	Χ	Χ	Χ	Н	NC	NC	NC	NC	NC
CP	Х	L	Н	Х	Χ	Х	Χ	Н	NC	NC	NC	NC	L
СР	Н	Н	Η	Х	Х	Х	Х	Н				H if count = 15 L if count < 15	
CP	Х	Н	Ĺ	Х	Х	Х	Х	Н	Α	В	С	D	H if count = 15 L if count < 15
CP	Х	L	L	Χ	Χ	Χ	Χ	Н	Α	В	С	D	L
CP	Χ	Χ	Χ	Χ	Х	X	Х	L	L	L	L	L	L

ASYNCHRONOUS TRUTH TABLE, DEVICE TYPE 4

	Inputs at time t _n									Outputs at time t _{n+1}			
Clock	Clock Enable Enable Load A B C D Clear							Q _A	Q _B	Qc	Q_D	Carry output	
X	Χ	Χ	X	Χ	Χ	Χ	Χ	L	L	L	L	L	L

NOTES:

- 1. See up count sequence table.
- 2. $L = V_{IL}$ for inputs, V_{0L} for outputs.
- 3. $H = V_{IH}$ for inputs, V_{0H} for outputs. 4. $X = V_{IH}$ or V_{IL} .
- 5. CP = Clock pulse.
- 6. NC = No change.

UP COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Q _C	Q _D (MSB)
L	L	L	L
Н	L	L	L
L	Η	L	L
Н	Η	L	L
L	١	Ι	L
Н	Ш	Ι	L
L	Η	Н	L
Н	Н	Н	L
L	L	L	Н
Н	L	L	Н
L	Ι	Ш	Н
Н	Ι	Ш	Н
L	L	Н	Н
Н	L	Η	Н
L	Η	Η	Н
Н	Н	Н	Н

FIGURE 3. <u>Truth tables</u> – Continued.

Device type 05

UP COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Qc	Q _D (MSB)
(LSB)			(MSB)
L	L	L	L
Н	L	L	L
L	Н	L	L
Н	Н	L	L
L	L	Н	L
Н	L	Н	L
L	Н	Н	L
Н	Н	Н	L
Ĺ	Ĺ	Ĺ	Н
Н	L	L	Н

Device type 06

UP COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Q _C	Q _D (MSB)
L	L	L	L
Н	L	L	L
L	Н	L	L
Н	Н	L	L
L	L	Н	L
Н	L	Н	L
L	Н	Н	L
Н	Н	Н	L
L	L	L	Н
Н	L	L	Н
L	Н	L	Н
Н	Н	L	Н
L	L	Н	Н
Н	L	Н	Н
L	Н	Н	Н
Н	Н	Н	Н

Device types 05 and 06

MODE SELECT TABLE

L	EP	ET	U/D	Action on Rising Clock Edge
L	Χ	Χ	Х	Load $(D_n \rightarrow Q_n)$
Н	L	L	Н	Count Up (increment)
Н	L	L	L	Count Down (decrement)
Н	Н	Χ	Х	No Change (Hold)
Н	Χ	Н	Χ	No Change (Hold)

H = High voltage level L = Low voltage

X = Don't care

FIGURE 3. <u>Truth tables</u> – Continued.

DEVICE TYPE 7 TRUTH TABLE

	Inputs at time t _n										Output	s at time t _{n=1}	
Count	Count												
Up	Down	Load	Α	В	С	D	Clear	Q_A	Q_B	Q_{C}	Q_D	Carry	Borrow
Н	Ι	Ι	Χ	Χ	Χ	Χ		NC	NC	NC	NC	Н	Н
Н	Н	Н	Χ	Χ	Χ	Χ	Н	L	L	L	L	Н	Н
Н	Н	L	Х	Х	Х	Χ	L	Α	В	С	D	Н	Н
Р	Н	Н	Χ	Χ	Χ	Χ	L	Prev	ious co	ount plu	ıs 1	Н	Н
									(note	e 1)			
Н	Р	Н	Χ	Χ	Χ	Χ	L	Previ	ous co	unt min	ius 1	Н	Н
									(note	e 2)			
N	Н	Н	Χ	Χ	Χ	Χ	L	NC	NC	NC	NC	N if count = 9	Н
												H if count ≠9	
Н	N	Н	Х	Х	Х	Х	L	NC	NC	NC	NC	Н	N if count = 0
													H if count ≠0

- See up count sequence table.
 See down count sequence table.
 L= V_{IL} for inputs, V_{OL} for outputs.
- H = V_{IH} for inputs, V_{OH} for outputs.
 X = V_{IH} or V_{IL}.
 NC = No change.

- 7. NA = Not applicable.
- 8. P = Positive going pulse.9. N= Negative going pulse.

FIGURE 3. <u>Truth tables</u> – Continued.

DEVICE TYPE 07

UP COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Qc	Q _D (MSB)	Carry
(LSB)			(MSB)	
L	L	L	L	Η
Н	Ш	Ш	L	Ι
L	Ι	Ш	L	Ι
Н	Ι	Ш	L	Ι
L	L	Н	L	Н
Н	L	Н	L	Н
L	Н	Н	L	Н
Н	Н	Н	L	Н
L	L	L	Н	Н
Н	Ĺ	Ĺ	Н	Ĺ

DOWN COUNT SEQUENCE TABLE

Q _A (LSB)	Q _B	Qc	Q _D (MSB)	Borrow
(LSB)			(10136)	
H	L	L	H	Н
L	L	L	Н	Н
Н	Ι	Ι	Ш	Η
L	Ι	Ι	Ш	Η
Н	Ш	Ι	Ш	Η
L	Ш	Ι	Ш	Η
Н	Ι	Ш	Ш	Η
L	Ι	Ш	Ш	Η
Н	Ш	Ш	Ш	Η
L	L	L	L	L

DEVICE TYPE 8 TRUTH TABLE

	Input at time t _n										Outp	outs at time t _{n=1}	
Count	Count												
up	down	Load	Α	В	С	D	Clear	Q_A	Q_B	Q_{C}	Q_D	Carry	Borrow
Н	Н	Η	Χ	Χ	Χ	Χ	L	NC	NC	NC	NC	Н	Н
Н	Н	Н	Χ	Χ	Χ	Χ	Н	L	L	L	L	Н	Н
Н	Н	L	Χ	Χ	Χ	Χ	L	Α	В	С	D	Н	Н
Р	Н	Н	Χ	Χ	Χ	Χ	L	Pre	vious co	ount plu	ıs 1	Н	Н
									(no	te)			
Н	Р	Η	Χ	Χ	Χ	Χ	L	Prev	ious co	unt mir	ius 1	Н	Н
									(note	e 2)			
N	Н	Н	Χ	Χ	Χ	Χ	L	NC	NC	NC	NC	N if count = 15	Н
												H if count ≠ 15	
Н	N	Н	Х	Х	Χ	Х	L	NC	NC	NC	NC	Н	N if count = 0
													H if count ≠0

- 1. See up count sequence table.
- 2. See down count sequence table.
- L = V_{IL} for inputs, V_{OL} for outputs.
 H = V_{IH} for inputs, V_{OH} for outputs.
- 5. X = V_{IH} or V_{IL}.
 6. NC = No change.
- 7. NA = Not applicable.
- 8. P = Positive going pulse.9. N = Negative going pulse.

FIGURE 3. <u>Truth tables</u> – Continued.

DEVICE TYPE 08

UP COUNT SEQUENCE TABLE

DOWN COUNT SEQUENCE TABLE

Q _A (LSB)	Q_B	Q_{C}	Q _D (MSB)	Carry
(LSB)			(MSB)	
L	L	L	L	Н
Н	L	L	L	Н
L	Н	L	L	Н
Н	Н	L	L	Н
L	L	Н	L	Н
Н	L	Н	L	Н
L	Н	Н	L	Н
Н	Н	Н	L	Н
L	L	L	Н	Н
Н	L	L	Н	Н
L	Н	L	Н	Н
Н	Н	L	Н	Н
L	Ĺ	Н	Н	Н
Н	Ĺ	Н	Н	Н
L	Н	Н	Н	Н
Н	Н	Н	Н	Ĺ

Q _A (LSB)	Q _B	Q _C	Q _D (MSB)	Borrow
Н	Н	Н	Н	Н
L	Н	Н	Н	Н
Н	L	Н	Н	Н
L	L	Н	Н	Н
Н	Н	L	Н	Н
L	Н	L	Н	Н
Н	L	L	Н	Н
L	L	L	Н	Н
Н	Н	Н	L	Н
L	Н	Н	L	Н
Н	L	Н	L	Н
L	L	Н	L	Н
Н	Н	Ĺ	Ĺ	Н
L	Н	Ĺ	Ĺ	Н
Н	Ĺ	Ĺ	Ĺ	Н
L	L	Ĺ	Ĺ	L

DEVICE TYPES 09 AND 13

Mode select table

	Inputs										
Load	Enable G	U/D	CLK	Mode							
Н	L	L	5	Count up							
Н	L	Н	5	Count down							
L	Х	Х	X	Preset (Asyn)							
Н	Н	Х	Х	No change (Hold)							

Ripple carry truth table

Inj	outs	Out	puts
Enable G	CLK	Max/Min	RC output
L		Н	
Н	Х	Х	Н
X	Х	L	Н

L = Low voltage level

H = High voltage level

X = Don't care

_ = Low-to-high clock transition

__= Negative going clock pulse

NOTE: The up count and down count sequence for device type 09 is identical as that for device type 08.

The up count and down count sequence for device type 13 is identical as that for device type 07.

FIGURE 3. <u>Truth tables</u> – Continued.

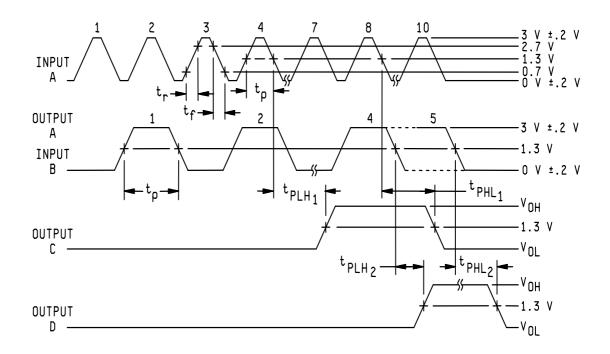
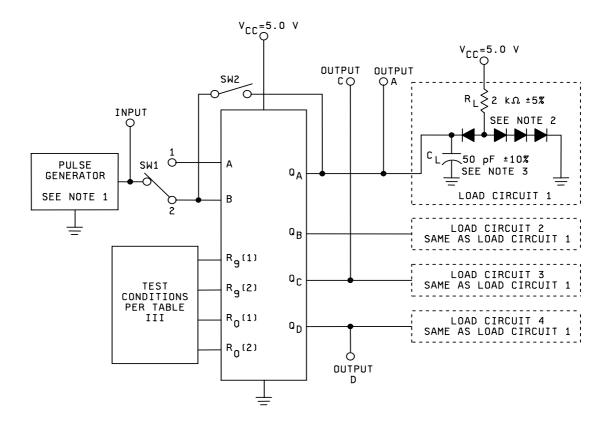
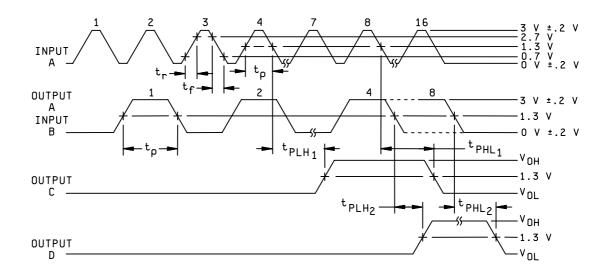



FIGURE 4. Switching time test circuit and waveforms for device type 01.



TEST	SWITCH POSITION		
	SW1	SW2	
F MAX	1	CLOSED	
A TO Q _C	1	CLOSED	
B TO Q _D	2	OPEN	

TEST CIRCUIT

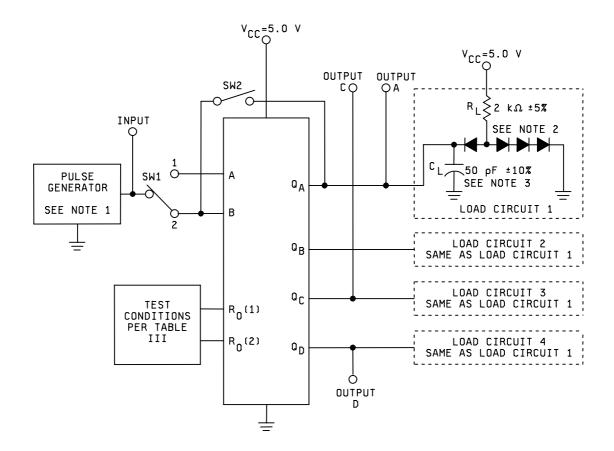
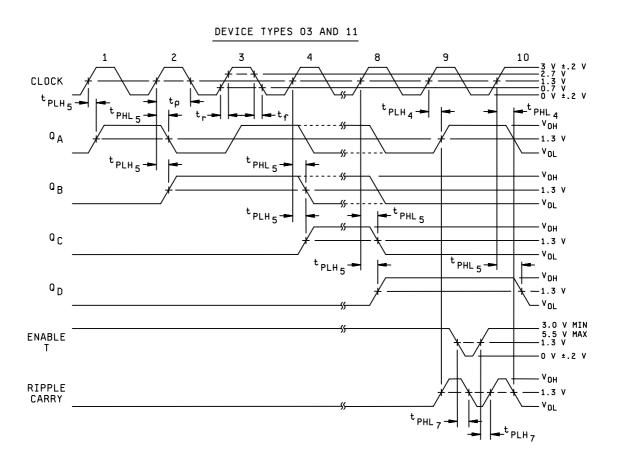

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, $Z_{out} \approx 50\Omega$.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6$ ns.

FIGURE 4. Switching time test circuit and waveforms for device type 01 - Continued.

VOLTAGE WAVEFORMS

FIGURE 5. Switching time test circuit and waveforms for device type 02.



TEST	SWITCH POSITION		
	SW1	SW2	
F MAX	1	CLOSED	
A TO Q _C	1	CLOSED	
B TO On	2	OPFN	

TEST CIRCUIT

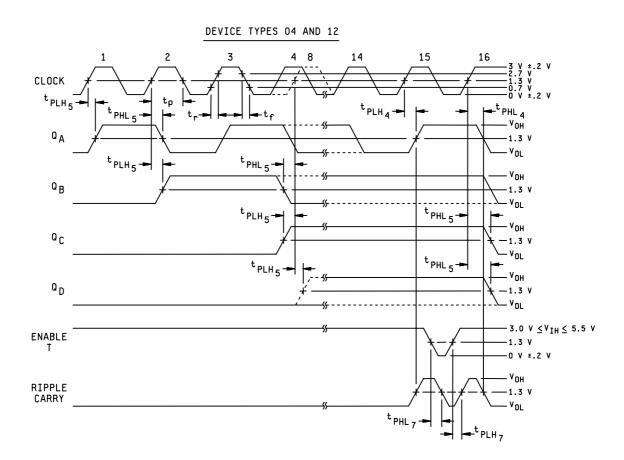

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, $Z_{out} \approx 50\Omega$.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6 \text{ ns.}$

FIGURE 5. Switching time test circuit and waveforms for device type 02 - Continued.

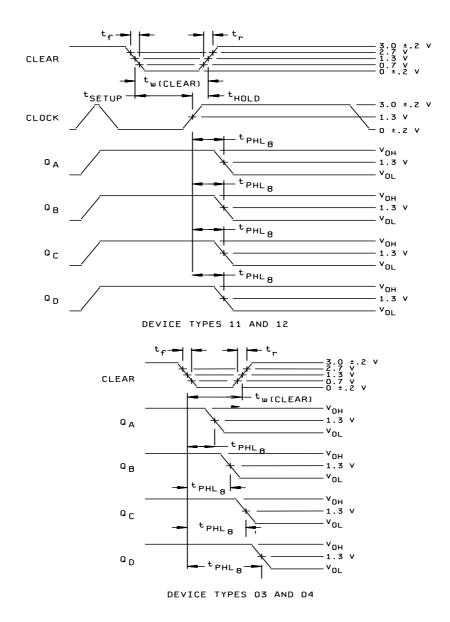

VOLTAGE WAVEFORMS

FIGURE 6. Switching time test circuit and waveforms for device types 03, 04, 11, and 12.

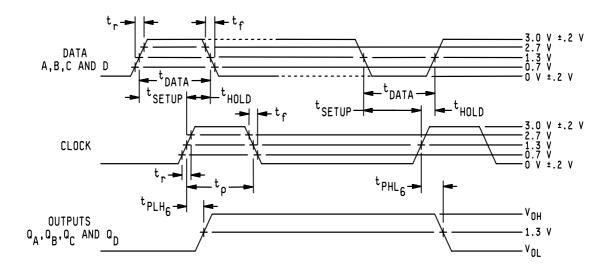

VOLTAGE WAVEFORMS

FIGURE 6. Switching time test circuit and waveforms for device types 03, 04, 11, and 12 – Continued.

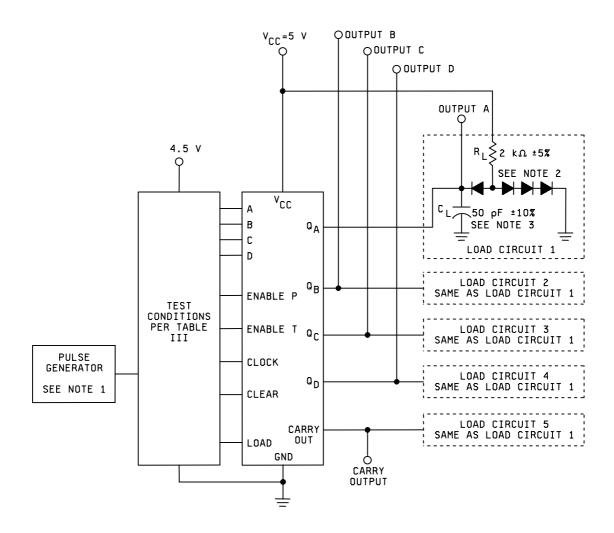

NOTE: The clear pulse generator has the following characteristics: $V_{gen} = 3.0 \text{ V}, \, t_r \leq 15 \text{ ns}, \, t_f \leq 6 \text{ ns}, \, 20 \text{ ns} \leq t_{w(clear)} \leq 25 \text{ ns} \text{ for types 11 and } 12, \, 20 \text{ ns} \leq t_{setup} \leq 25 \text{ ns}, \, t_{hold} = 0 \text{ ns}.$

FIGURE 6. Switching time test circuit and waveforms for device types 03, 04, 11, and 12 - Continued.

NOTE: The data pulse generator has the following characteristics: $V_{gem} = 3.0 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \le 6 \text{ ns}$, $t_{DATA} = 30 \text{ ns}$, $t_{setup} = 20 \text{ ns}$, $t_{HOLD} = 10 \text{ ns}$.

FIGURE 6. Switching time test circuit and waveforms for device types 03, 04, 11, and 12 – Continued.

- 1. The pulse generator has the following characteristics: $V_{qen} = 3 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \leq 6 \text{ ns, } t_p = .5 \text{ } \mu\text{s, PRR} \leq 1 \text{ MHz, } Z_{out} ~\approx~ 50\Omega.$
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.4. Voltage values are with respect to ground terminal.
- $5. \quad F_{MAX} \hbox{:} \ t_r = t_f \leq 6 \ ns.$

FIGURE 6. Switching time test circuit and waveforms for device type 03, 04, 11, and 12 - Continued.

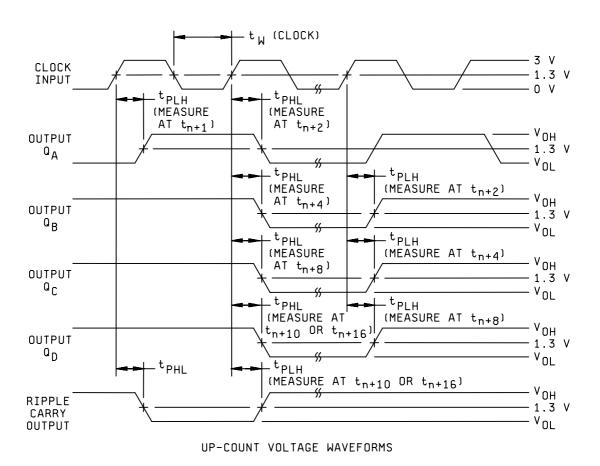
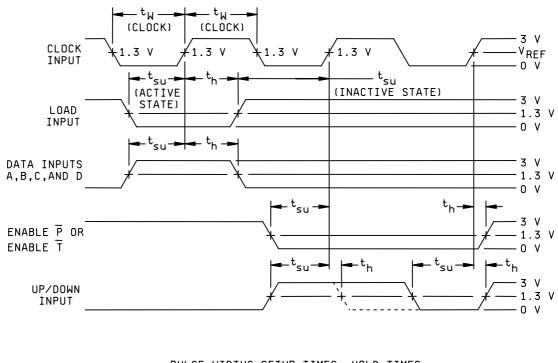
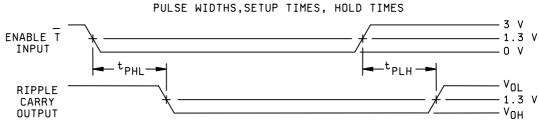
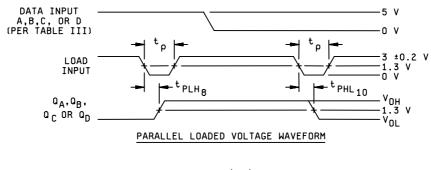
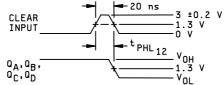



FIGURE 7. Switching time test circuit and waveforms for device types 05 and 06.






FIGURE 7. Switching time test circuit and waveforms for device types 05 and 06 - Continued.

- The pulse generator has the following characteristics: $V_{gen} = 3 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \leq 6 \text{ ns}, \ t_p = .5 \ \mu\text{s}, \ PRR \leq 1 \ MHz, \ Z_{out} \ \approx \ 50\Omega.$
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
 4. Voltage values are with respect to ground terminal.
- F_{MAX} : $t_r = t_f \le 6 \text{ ns.}$
- The clear pulse generator has the following characteristics: $V_{gen} = 3.0 \text{ V}$, $t_r \le 15$ ns, $t_f \le 6$ ns, $t_{w(CLEAR)} = 20$ ns.

FIGURE 7. Switching time test circuit and waveforms for device types 05 and 06 - Continued.

CLEAR SWITCHING VOLTAGE WAVEFORM

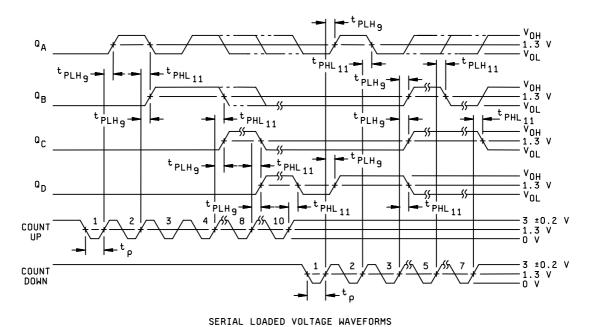
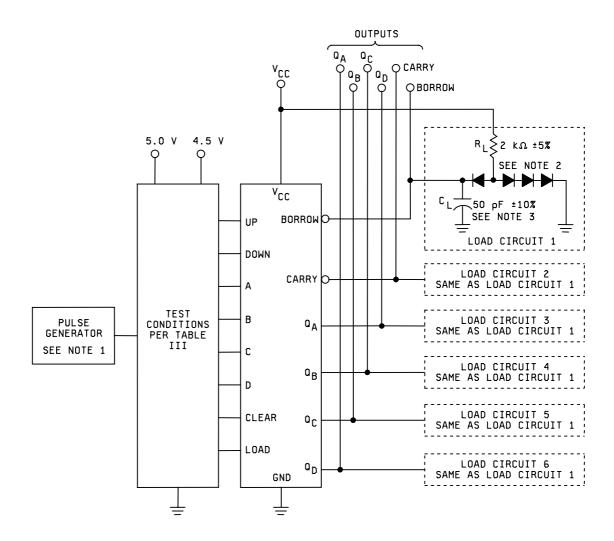
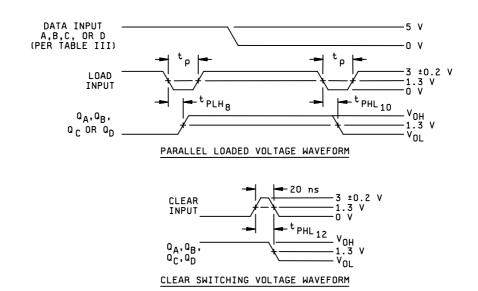




FIGURE 8. Switching time test circuit and waveforms for device types 07.

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, t_p = .5 μ s, PRR \leq 1 MHz, $Z_{out} \approx 50\Omega$, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns between 0.7 V and 2.7 V.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6 \text{ ns}$
- 6. The clear pulse generator has the following characteristics: $V_{gen} = 3.0 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \le 6 \text{ ns}$, between 0.7 V and 2.7 V, $t_{w(CLEAR)} = 20 \text{ ns}$.

FIGURE 8. Switching time test circuit and waveforms for device types 07 and Continued.

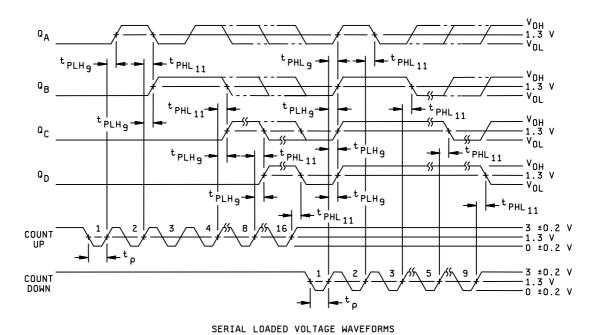
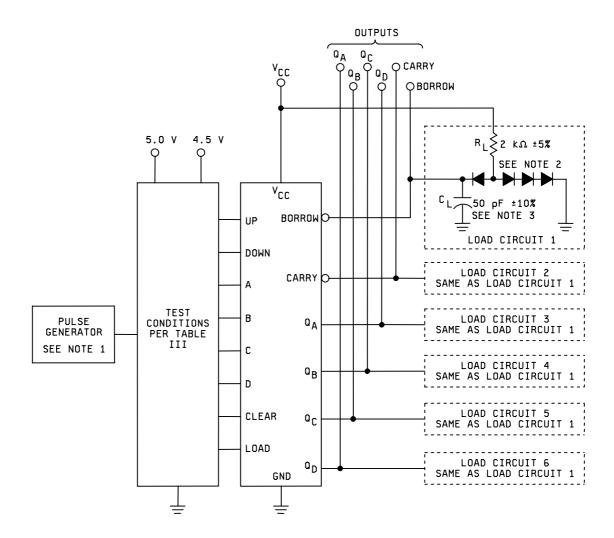
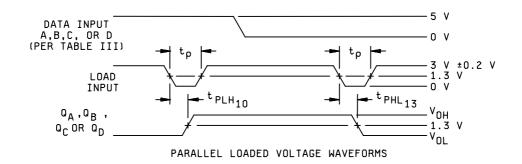
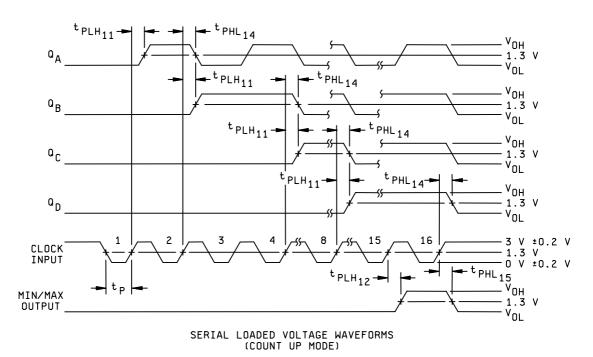
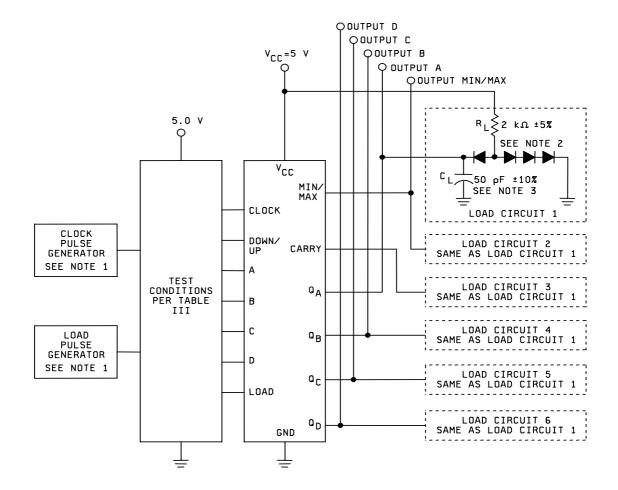
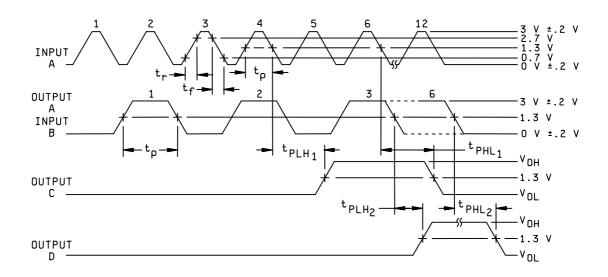




FIGURE 9. Switching time test circuit and waveforms for device type 08.

- 1. The load and count pulse generators have the following characteristics: V_{gen} = 3 V, t_p = .5 μ s, PRR \leq 1 MHz, $Z_{out} \approx 50\Omega$, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns between 0.7 V and 2.7 V.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6 \text{ ns.}$
- 6. The clear pulse generator has the following characteristics: $V_{gen} = 3.0 \text{ V}$, $t_r \le 15 \text{ ns}$, $t_f \le 6 \text{ ns}$, between 0.7 V and 2.7 V, $t_{w(CLEAR)} = 20 \text{ ns}$.

FIGURE 9. Switching time test circuit and waveforms for device type 08 - Continued.


FIGURE 10. Switching time test circuit and waveforms for device type 09.

TEST CIRCUIT

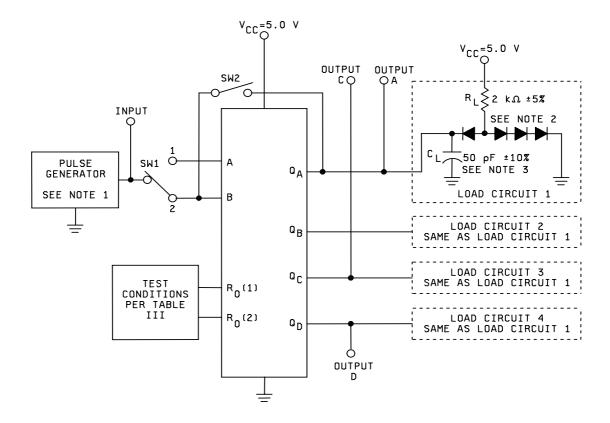
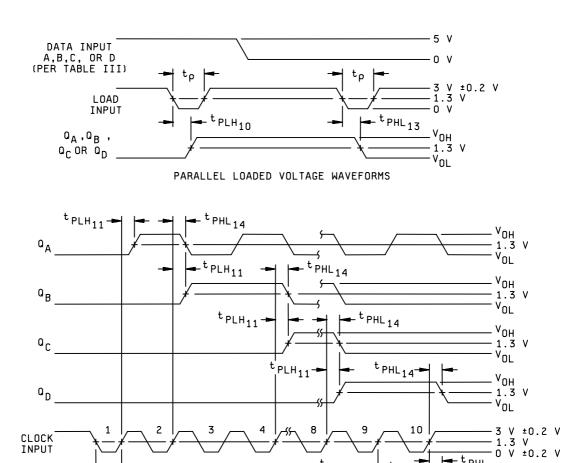

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, t_p = .5 μ s, PRR \leq 1 MHz, $Z_{out} \approx 50\Omega$, $t_r \leq$ 15 ns, $t_f \leq$ 6 ns between 0.7 V and 2.7 V.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- $5. \quad F_{MAX} \hbox{:} \ t_r = t_f \leq 6 \ ns.$

FIGURE 10. Switching time test circuit and waveforms for device type 09 - Continued.

VOLTAGE WAVEFORMS

FIGURE 11. Switching time test circuit and waveforms for device type 10.



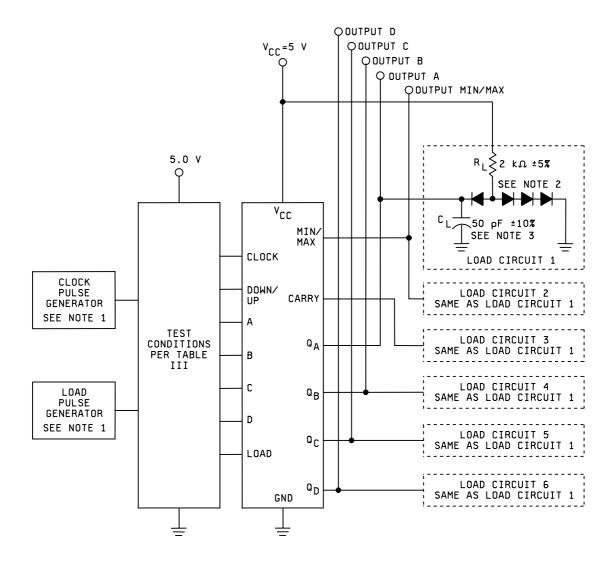
TEST	SWITCH	POSITION
	SW1	SW2
FMAX	1	CLOSED
A TO Q _C	1	CLOSED
B TO Q _D	2	OPEN

TEST CIRCUIT

- 1. The pulse generator has the following characteristics: V_{gen} = 3 V, $t_r \le$ 15 ns, $t_f \le$ 6 ns, t_p = .5 μ s, PRR \le 1 MHz, $Z_{out} \approx 50\Omega$.
- 2. All diodes are 1N3064 or equivalent.
- C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6 \text{ ns.}$

FIGURE 11. <u>Switching time test circuit and waveforms for device type 10</u> – Continued.

SERIAL LOADED VOLTAGE WAVEFORMS (COUNT UP MODE)


^tPLH₁₂→

T PHL 15

- ^VOH - 1.3 V - V_{OL}

FIGURE 12. Switching time test circuit and waveforms for device type 13.

MIN/MAX OUTPUT

- 1. The pulse generator have the following characteristics: V_{gen} = 3 V, t_p = .5 μ s, PRR \leq 1 MHz, Z_{out} \approx 50 Ω , t_r \leq 15 ns, t_f \leq 6 ns, between 0.7 V and 2.7 V.
- 2. All diodes are 1N3064 or equivalent.
- 3. C_L includes probe and jig capacitance.
- 4. Voltage values are with respect to ground terminal.
- 5. F_{MAX} : $t_r = t_f \le 6 \text{ ns.}$

Figure 12. Switching time test circuit and waveforms for device type 13 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be H \ge 2.0 V; or L \le 0.7 V; or open).

	#				J							٦	٦		_													T						П				
	Unit		>	=	=	=	=	=	=	=	=	=	=	=	mA	=	=		=	=	>	-	=			=	μА	=	=	=	=	=	=	=	=	=	=	n
Limits		Max	0.4	=	=	=	=								/9	=	ı	и	ш	=	-1.5	=	=	и			20	=	=	=	100				80	400	160	800
Ė		Min							2.5	"		=			<u>6</u> /	"			"																			
	Measured	terminal	ဝိ	ő	Q	Q	ဝင	$Q_{\rm B}$	Q	Q	g	ď	တိ	ő	$R_{o}(1)$	$R_{\rm o}(2)$	R9(1)	R9(2)	٨	В	R9(1)	R9(2)	⋖	В	$R_{\rm o}(1)$	$R_{\rm o}(2)$	R9(1)	R9(2)	$R_{\rm O}(1)$	$R_{\rm o}(2)$	R9(1)	R9(2)	$R_{o}(1)$	$R_{o}(2)$	∢	∢	В	В
41	20	Α	GND	=	=	2.0 V	GND	н	н	2.0 V	GND	2.0 V	GND	GND					0.4 V				-18 mA												2.7 V	5.5 V		
13	19	NC																																				
12	18	Q				2/				-0.4 mA		-0.4 mA																										
11	16	Q_{D}			4 mA				-0.4 mA		-0.4 mA																											
10	14	GND	GND	=	=			"			=	=	-	=	=	"		н		=	=	=	=	н	н	"		=	=			"			=	=	=	
6	13	QB		4 mA				4 mA						-0.4 mA																								
8	12	Q _C	4mA				4 mA						-0.4 mA																									
7	10	R9(2)	GND	GND	0.7 V	2.0 V		н	u		=	=	0.7 V	0.7 V			5.5 V	0.4 V	/₹	/8		-18 mA						2.7 V				5.5 V						
9	6	R9(1)	GND	GND	2.0 V	0.7 V	2.0 V				=	=	0.7 V	0.7 V			0.4 V	5.5 V	%	/⊗	-18 mA	-					2.7 V				5.5 V							
4 5 6 7 8	8	Vcc	4.5 V	=	=			"			=	=	=	=	5.5 V	"		"	=	=	4.5 V		=	"		"	5.5 V	=	=			"			=	=	=	=
4	9	NC																																				
е	4	R _o (2)	2.0 V	=			0.7 V	2.0 V	0.7 V	2.0 V	0.7 V	0.7 V	3∕	3/	5.5 V	0.4 V			GND	GND						-18 mA				2.7 V				5.5 V				
2	က		2.0 V	=				^		0.7 V	=		%	_		5.5 V			GND	GND					-18 mA	-			2.7 V				5.5 V					
_	2		2.0 V	=	=	SND	2.0 V				2.0 V	SND	3/ 4/	_		,				0.4 V				-18 mA	-1				.,								2.7 V	5.5 V
ses C,D	es <u>1</u> /			2			5 2			8					13	14	15	16	17	18 0	6	0	1		3	4	25	9	7	8	6	0	1	2	33	34	35 2	36 5
O-Cases A,B,C,D		Test no.	`-	. 1	(-)	7	7	•		3	3,		11	1	-	1	1	1	1	-	-	2	2	2	2	2	2	2	2	2	2	3	3	ε	က	8	3	3
MIL-STD- 883	_		3007	=	=	=	=		3008	=	=	=	=	=	3009	=	=	=									3010	3	3	n	3	3	3	n	3	я	я	я
	Symbol		Λ^{OF}						Λон						11				끼	IL3	V _{IC}						ᄤ				I _{H2}				IH3	I _{IH4}	Ін5	9Н1
	bgroup		1	= 25°C																																		

See footnotes at end of device types 01.

TABLE III. Group A inspection for device type 01 - Continued Terminal conditions (pins not designated may be $H \gtrsim 2,0$ V or $L \leq 0.7$ V or open).

Unit			mA	_	.	Ι.																																												\neg
<u> </u>		Max	-100 n	_	+	_	0																																											_
Limits		_		-	_	-	-																																											_
		Min	-15	=																																														
0000	terminal		QD	ď	ඊ	20 /2	200																See 9/	Ī																										
14	20	٧			GND =					B 8/	=		: =	=	=		=	=	=	=		=	=	=		=	=				=	=	=		н	=			=	=	=	=	=	=	=	=			=	=
13	19	NC																																																
12	18	ď		GND						I	I	_ :	_	Е -	=	=	-	=	=	=	-	=	=	=		-	=				=	=	-			=			=	=	-	=	=	-	=	=	=	=	=	-
11	16	g	GND							I	I	7		c -	-	=				=		=	=	=		I	I.	٦.			=		=	н	н	I	Ι.] =		-		=	=				н			
-(u 10	14	GND	GND			-				GND	-			_	-	=	=	-	=	=	-	=	=	-	=						=	=	=			=			=	-	=	=	-	=	=	=	н	=		-
7 V or oper 9	13	ď			GND						-		: =	-	-	-	-		-	ī	I		7	I	I	_	-			. 3	- - -	:	1 _	I	I				-		= =	-		I	_	=	=	I	I	_
Terminal conditions (pins not designated may be $H \ge 2.0 \text{ V or } L \le 0.7 \text{ V or open}$).	12	တိ				ONIC					_		: =	_	_	=	=		=	=	=	I	=	_	=	7					=	_	=		н	_			=	-	=	I	=	=	_	=		=		I
be H≥2.0	10		5.5 V	> 2	-	-				4	4	В	∢ <	₹ 0	0 0	Δ <			_			_	_	_				= (В.		-		_				_		-	<	c =		_		В		_	=		_
ted may	_	-		-		1				,	1		1							-											-																Ļ	H		
t designat	6	R9(1)	5.5 V	5.5 V	GND B	-		re omittec	e omitted	٧	∢	В	∢ <	∢ 0	Δ=	=	-	=	=	=	=	=	=	=	=	-	-			∢ =	=	=	=			=		- 0	Δ =	=	-	=	=	=	=	∢	=	=	=	4
on Spins no 5	∞	V _{cc}	5.5 V	=		-		V _{IC} tests a	√ _{IC} tests ar	4.5 V	=		: =	=	-	=	=	=	=	=	=	=	=	=		-	=				=	=	=		н	=	= :		=	=	=	=	=	=	=	=		=	=	-
al condition 4	9	NC						25°C and	:ept $T_{\rm C}$ = -55°C and $V_{\rm IC}$ tests are omitted.																																									
Termin 3	4	R _o (2)	GND	GND	/SI *			$cept T_C = 7$	$cept T_c = -$	A <u>8</u> /		= 0	20	n <	۲ =	н			н		н	н	=		н			= 0	В			=	н	н	н	н							н		A		н			=
2	3	R _o (1)	GND	GND	/òl *			group 1, e)	group 1, ex	/8 A		= (20 0	n <	< <	< <	(⊲	< ⊲	<u>د</u> د	о В	=		=	-	=					: <	ζ:	=	=		н	=	= :		<u>α</u>	> <	ζ =	=	=	=	=	В		=	=	
-	2	В			3/ 2/	9 (4	GIND	as for subo	as for subę	/8 A	В	В	∢ 0	ם ם	> ۵	< α	2 4	α.	۵۵	В	V	В	Α	В	A	В	V	В	В.	∢ ۵	۵ ۵	В	V	В	Α	В	۷ı	a	۷ م	ς α	2 4	В	Α	В	В	В	٧	В	Α	В
Cases	Cases 1/ 2	Test no.	37	38	39	40	+	Same tests, terminal conditions, and limits as for subgroup 1, except $T_{\rm C}$ = 125°C and $V_{\rm C}$ tests are omitted.	Same tests, terminal conditions, and limits as for subgroup 1, exc	42	43	44	45	40	45	40	50	51	52	53	54	55	26	57	58	29	09	61	62	63	65	99	67	89	69	70	71	72	7.7	75	76	77	78	62	80	81	82	83	84	82
	MIL-STD-	method	3011	=				erminal conditi	rminal condition	3014		=	: =	-	-	-	=	-	=	=	=	-	=		=	-	=				=	=	-			=	= :		=	=	=	-	=	=	=	=		=	=	
	Symbol		so _l			1	221	Same tests, te	Same tests, te	Func-	tional	tests	7								_				_							_			_												_		_	
	Subgroup		1	c = 25°C				2	3		Γ _C = +25°C																																							

See footnotes at end of device type 01.

ns " 74 81 52 56 Max 53 37 40 Limits Min 29 Measured terminal A to Q_C
A to Q_C
B to Q_D
B to Q_D A to Q_C
B to Q_D
A to Q_C
A to Q_D See 9/ A to QA ZZ IN 10/ ZZ 10/ 20 S 13 19 12 18 ď OUT TUO OUT OUT 16 GND GND 10 14 TABLE III. Group A inspection for device type 01 - Continued Terminal conditions (pins not designated may be $H \ge 2.0$ V or L ≤ 0.7 V or open). 13 ď 100 TU0 7U0 TU0 g I I 12 10 R9(1) GND 5.0 V Vcc terminal conditions, and limits as for subgroup 7, except T_{C} = 125 $^{\circ}\text{C}$ and -55 $^{\circ}\text{C}$. 2 Same tests, terminal conditions, and limits as for subgroup 10, except T_{C} = -55°C. $R_{o}(2)$ <u>11</u>/ GND R_o(1) 11/ GND GND GND B 8/ GND В ZΖ Test no. 111 111 111 111 111 112 112 123 123 125 126 127 128 129 130 132 134 135 MIL-STD-883 method 3003 (Fig. 4) 3014 Same tests, Symbol Func-tional tests 7/ MAX terna terra terra terra MAX term terms terms 10 T_C = +125°C 9 T_C = +25°C $T_{\rm C} = +25^{\circ}{\rm C}$ Subgroup 7 ω

See footnotes at end of device type 01.

SI =

Unit

1/ Case 2 pins not referenced are N/C.

2/ Test 4, Pin 12; 4 mA + I_{IL3(MAX).}

3/ Apply 4.5 V pulse then ground prior to taking measurements to set device in the desired state.

 $\underline{4}/$ Apply two pulses after R_o (reset) pulse.

5/ Apply one pulse after Ro (reset) pulse.

6/ In limits (mA) min/max values for circuits shown:

Parameter	Terminals				Circuits			
		٧	В	Э	Q	Ш	Ь	ŋ
메	R _O (1)	-12/36	03/40		03/40	-12/36	-12/36	
	R _O (2)	=	=		=	=	=	
	R9(1)	=	=		=	=	=	
	R9(2)	=	=		=	=	=	
끼	٧	-0.5/-2.0	-0.5/-2.0 -1.0/-2.4		-1.0/-2.4	-1.0/-2.4 -0.5/-2.0	-0.5/-2.0	
ଆଧ	В	-0.4/-1.6	-0.4/-1.6 -1.3/-3.2		-1.3/-3.2	-1.3/-3.2 -1.3/-2.4	-1.0/-2.4	

 \overline{Z} Only a summary of attributes data is required.

 $\underline{8}/A = 3.0 \text{ V minimum}, B = 0.0 \text{ V or GND}.$

9/ H > 1.5 V; L < 1.5 V.

 $\overline{10}$ / F_{MAX} minimum limit specified is the frequency of the input pulse. The output pulse shall be one-half of the input frequency.

11/ Momentary 3.0 V (min), then ground. Maintain ground for measurement.

TABLE III. Group A inspection for device type 02.

					- 1	~	nditions	(pins no	conditions (pins not designated may be $H \ge 2.0 \ V_{\rm i}$ or $L \le 0.7 \ V_{\rm i}$ or open)	ted may	, ≥ H ∋d	2.0 V; o	r L ≤ 0.7	' V; or o	pen).	•		•		•	
			Cases A,B,C,D	-	7	ო	4	2	9	7	ω	<u>ი</u>	10	7	12	13	4		Ē	Limits	
Subgroup		Symbol MIL-STD- 883	Cases <u>1</u> / 2	7	က	4	9	ω	6	10	12	13	41	16	18	19	20	Measured terminal			Unit
		method	Test no.	В	R _o (1)	R _O (2)	NC	Vcc	NC	NC	Qc	Q	GND	g	Q	NC	Α		Min	Max	
1	Vol	3007	-	GND	2.0 V	2.0 V		4.5 V					GND		2/		2.0 V	Q		0.4	>
$Tc = 25^{\circ}C$	^	=	2	2.0 V		=					7	4 mA	=				GND	QB			
		=	3	н	н	"		"		4	4mA		н				н	$Q_{\rm c}$		н	
			4		H	=							=	4 mA				Q		=	=
	V _{ОН}	3008	2	GND	3/	3/		-					=		-0.4 mA		3/ 4/	ď	2.5		=
			9	3/ 4/	3/						9	-0.4 mA					GND	Q			=
		ı	7	3/ 2/		=				Ō.	-0.4 mA		=					Qc			=
		=	8	/9 /8	=	=		=					<u>-</u>	-0.4 mA			=	g	=		=
	V _{IC}		6					=					=				-18 mA	Α		-1.5 mA	=
			10	-18 mA				=					=					В		=	=
					-18 mA			=					=					R _o (1)		=	=
			12		1	-18 mA		=					=					R _o (2)		=	=
	- FI	3009	13			5.5 V		5.5 V					=					R _o (1)	//	//	mA
		н	14		5.5 V	0.4 V							=					$R_{o}(2)$			
	211 _ا	=	15		/₹	/8		=					=				0.4 V	٧	=	=	=
	ខារ	=	16	0.4 V	/∂I	/SI		=					=					В	-	=	=
	lн	3010	17		2.7 V	GND		=					=					R _O (1)		20	μA
	-HI	=	18		GND	2.7 V		=					=					R ₀ (2)		20	=
	메	=	19		5.5 V	GND		=					=					R ₀ (1)		100	=
	Інг	н	20		GND	5.5 V												$R_0(2)$		100	=
	Інз	=	21		5.5 V	=		=					=				2.7 V	4		80	=
	IIH4	=	22		=	=		=					=				5.5 V	٧		400	=
	Інь	=	23	2.7 V	=	=		=					=					В		80	=
	9Н1	=	24	5.5 V	=	=		=					=					В		400	=
	sol	3011	25	GND	3/	3/		=							GND		3/ 4/	Q	-15	-100	mA
		=	26	3/ 4/	=	=		=				GND	=				GND	ő	=	=	=
		н	27	3/ 2/	н			"		9	GND		н				n	$Q_{\rm c}$	н	н	
		=	28	/9 /8				=					н	GND			n	Q_{D}	=	н	=
	lcc	3005	29	GND				-					=					Vcc		15	=
2	Same tes	ts, terminal	Same tests, terminal conditions, and limits as for subgroup	and limits	as for sul		except T _c	; = 125°C	1, except $T_{\text{C}}=125^{\circ}\text{C}$ and V_{IC} tests are omitted.	sts are on	nitted.										
3	Same tes	ts, terminal	Same tests, terminal conditions, and limits as for subgroup	and limits	as for sul		except T _c	; = -55°C ;	1, except T_{C} = -55°C and V_{IC} tests are omitted.	ts are on	nitted.										

See footnotes at end of device types 02.

	Unit																																														MHz	us	=		
	Limits		Min Max																																												59	3 53		26	20
	ned		M																Š	2																														ං	- -
	Measu	terminal			1	1	ı	1 1				ı			1 1				000 10	ב ב	1			ı						1					ı		ı										A to QA	A to Q _c	A to	B to Q _D	g g
	14	20		<u> </u> 8		=	=	=	-	- -	=	-	=	=	=	=		- -	=	=	=	=	=	=	=		-	=	=	=	=	-	=	=	=	- -	=	=	=	=	=	∢	а.	α α	נ		Z 11	Z	Z		
	2 13	3 19	_A NC								1						1	1	1	Τ	Τ	I							I	Ī							I														
	12	18	Q	T		=			-		-	-	=	=	=	-		- -	=	=	-	-	=	=	=			-	-	=	-	-		-	=	- -		=	=	=			Ι:	Ι _	_		TU0			_	
	11	16	g			=	=		-		-	-	=	=		-	= :	Ι:	-	=	-	=	=	=	7			=	=	=	=	I		=	=	- -	=	=	=	7	=									TUO	3
pen).	10	14	GND	GND		=	=				: =		=	=						=	=	=	=	=				=	=	=	=	=		=	=			=	=	=				: =			GND	=			
tinued 0.7 V or c	6	13	QB	٦		=	=	I	_		: =	I	I	_	_	I	Ι.	_ .	داد	= =	-	_	I	I	٦	_ :	Ξ.	c _	,	ı	I	_	_	I	=		_	7 1	=	:		н		: =							
TABLE III. Group A inspection for device type 02 - Continued Terminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.7 V or open).	80	12	Q _c	٦		=	=						=	I			= .			=	ı	=	=		٦			ı	: =	=	-	7	н	=	= :	- :	E =	=	=	7		н		: =				DUT	OUT		
device tylay be H≥		10	NC	1	_ !		1					1								-1	-1			ı					1	1	1															•		ı	11		
pection for	9	6	NC																																																
roup A ins	2	80	Vcc	4.5 V		=	-	-	-	-	. -		=	-	-	-				=	-	-	=	-	-		. -	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-			_	<u>ာ</u>	5.0 V	-	-		-
SLE III. G	4		NC	4																																									- !	3 and -55	ω				_
TAI minal con	,									1	1						1		1	1	1	Ī					1	1	1								I	1	1				1		-	c = +125°					_
Te	ဇ	4	R ₀ (2)	A		В	=	=	A		. 0	a =	=	=	=				=	=	-	=	=	=				=	=	=	=	=	=	=	=		=	=	=	٨	Α	В				except T		/6 A	H	A	
	2	က	R _O (1)	/ <u>8</u> ∀		=	=	-	-	<u>в</u>	: =	-	=	-	-	=		- -	-	=	-	-	=	-	-			=	=	=	=	-	-	=	∢	3 :	-	=	-	-	-	В			<u>'</u>	ibgroup 7,	GND	12/	GND	12/	GND
	-	2	В	<u>8</u> ∂/	< α	a	4	В		= <	∢ <	c m	4	В	A	В	∢ (m <	∢ 0	> ۵	τ α	Δ «	В	٧	В	Κı	м <	τ α	Δ <	В	4	В	A	В	В	∢ (n <	τ α	ο ∢	< <	В			=		s as for su				Z	≧
	Cases A.B.C.D	Cases 1/ 2	Test no.	30	33	33	34	35	36	37	2000	40	41	42	43	44	45	46	47	40	450	51	52	53	54	55	56	27	29	09	61	62	63	64	65	99	/9	00	202	71	72	73	74	42	2	ons, and limit	77	78	26	80	RΊ
		MIL-STD- 883	method	3014		-	=		=		: =	=	=	=		=		: :	=	=	=	=	=	=	Ξ		: :	=	=	=	=		=	=	=		-	=	=	=		=		: =		rminal conditic	3003 (Fig. 5)	6::	n	,,	-
		Symbol		Func-	tional	3/	<u>1</u> I					1	1	1						-1	-1		1	1				1		ı		1						1		1				_1_		Same tests, terminal conditions, and limits as for subgroup 7, except $T_c = +125^{\circ}C$ and -55 $^{\circ}C$.	F _{MAX}	t _{PLH1}	t _{PHL1}	t _{PLH2}	ГРНГ1
		Subgroup			Tc = 25°C t		-																																								9 T ₂ = ±25°C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	· I	1

See footnotes at end of device type 02

TABLE III. Group A inspection for device type 02 - Continued Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.7 V or open).

1				-	c	0	d) el lollini	101011	algi lated	111ay De 11) 	or openy.	7	_	7	7.7		of on:		::
2 3 4 6 8 9 10 12 13 14 16 18 19 20 terminal			Cases A,B,C,D	-	7	n	4	Ω	٥	,	xo	ח	2	F	7.	<u>5</u>	<u>+</u>	Measured	LIMITS		Ĕ
method Test no. B Ro(1) Ro(2) NC NC NC QC QB QB QA	loqu	MIL-STD- 883	Cases <u>1/</u> 2	2	၁	4	9	80	6	10	12	13	14	16	18	19	20	terminal			
3003 82 GND 5.0 V CHG.5)		method	Test no.	В	$R_{o}(1)$	$R_{o}(2)$	NC	Vcc	NC	NC	g	ဗီ	GND		ď	NC	4		_	lax	
12 83 12 A	MAX	3003 (Fig. 5)	82		GND			5.0 V					GND		OUT	_	N 11/	A to Q _A	59	2	ΗZ
" 84 GND	Ξ	=	83		12/	⋖	1	=			OUT		=			ı	Z	A to Q _c	\dagger	+-	SL
" 85 IN 12/ A " B Bto Q _D " Bto	Ŧ		84		GND			=			OUT						Z	A to Q _C		31	_
" BE OUT BE ODD "	'H2		85	Z	12/	٧		=						OUT				B to Q _D		82	
	HL2	и	98	N	GND			ш					"	OUT				B to Q _D		82	

Case 2 pins not referenced are N/C.

For test 1, 4 mA +I_{IL3} (max). 7 Apply 4.5 V pulse, then ground prior to taking measurements to set device in the desired state. Maintain ground for measurement.

8

Input pulse must be applied one time after Ro pulse. 4۱

Input pulse must be applied twice after Ro pulse. 2 Input pulse must be applied four times after Ro pulse. /9

I_{IL} limits (mA) min/max values for circuits shown:

	9				
	Э	-12/36	н	0.5/-2.0	9.1-/4.0-
	3	-12/3603/40 -12/3603/40 -12/36 -12/36	н	-0.5/-2.0 -1.0/-2.4 -0.5/-2.0 -1.0/-2.4 -1.0/-2.4 -0.5/-2.0	0.4/-1.6 -0.4/-1.6 -0.4/-1.6 -0.4/-1.6 -0.4/-1.6 -0.4/-1.6
Circuits	Q	03/40	н	-1.0/-2.4	9.1-/4.0-
	С	-12/36		-0.5/-2.0	-0.4/-1.6
	В	03/40		-1.0/-2.4	-0.4/-1.6
	٧	-12/36	и	-0.5/-2.0	-0.4/-1.6
Terminals		R _O (1)	R _O (2)	4	В
Parameter		비		57II	l _{L3}

8/ Only a summary of attributes data is required.

9/A = 3.0 V minimum; B = 0.0 V or GND.

10/ H > 1.5 V; L < 1.5 V.

 $F_{\rm MAX}$ min limit specified is the frequency of the input pulse. The output frequency shall be one-half the input frequency. 1

 $\underline{12}/$ Momentary $3.0\,\mathrm{V}$ (min), then ground. Maintain ground for measurement.

		5		^	=	=	=		=	=		=	=		=	"	=	=	=	=		=	μ	-	"	"	"	"	ä	"	3	•	*	"	"	"	"	"	"	,
	Limits		Мах	0.4	н		"	n						-1.5	н	11					н		4/	n	n	"	"	11	n,	"	11	20	40	20	и	"	"	3	40	40
	Ė		Min						2.5			"	3										4/	'n	"	"	"	"	"	"	,,									
		Measured terminal		တိ	Q _C	တီ	Q	Ripple carry	်တိ	တိ	QB	Q	Ripple carry	Clear	Clock	٧	В	ပ	۵	EnP	Load	EnT	Clear	Clock	۷	В	ပ	۵	EnP	Load	EnT	Clear	Clock	Α	В	ပ	۵	EnP	Load	EnT
	16	20	Vcc	4.5 \		=			=	=	н			н	н		=	=	=				5.5 V	"	»	"	"	×	y,	33	33	2	3	n	ii.	"	n	3 :	3	11
	15	19	Ripple carry					4 mA					4 mA																											
	14	18	Q				4 mA					4 mA																												_
	13	17	QB			4 mA					4 mA																													_
oen).	12	15	တိ		4 mA					4 mA																														
and 12. 0.7 V; or o	11	14	o	4 mA					4 mA																															
3, 04, 11, i V: or L ≤ (10	13	EnT					0.7 V					2.0 V									-18 mA							4.5 V	4.5 V	0.4 V							GND	GND	2.7 V
TABLE III. Group A inspection for device types 03, 04, 11, and 12. Terminal conditions (pins not designated may be $H \ge 2.0$ V; or $L \le 0.7$ V; or open).	6	12	Load	GND	=	=	-		GND	-		=									-18 mA				GND	,,	,,,	×	4.5 V	0.4 V	4.5 V							GND	2.7 V	GND
on for devi	8	10	GND	GND	=	=		-	=			=				=	=	=	=				**	n	"	,,	"	,,	"	"	,,	z	3	"	"	"	33	3 :	я	"
A inspection of design	7	6	EnP																	-18 mA									0.4 V	4.5 V	4.5 V							2.7 V	GND	GND
I. Group / ns (pins n	9	8	Q	0.7 V					2.0 V				2.0 V						-18 mA									0.4 V									2.7 V			
TABLE II	2	7	C		0.7 V					2.0 V			3/					-18 mA									0.4 V									2.7 V				_
Termin	4	5	В			0.7 V					2.0 V		3/				-18 mA									0.4 V									2.7 V					
	3	4	Α				0.7 V					2.0 V	2.0 V			-18 mA									0.4 V									2.7 V						
	2	3	Clock	/7		=	=		2/		н	=			-18 mA									0.4 V									2.7 V							
	1	2	Clear	4.5 V		=			=	=		=		-18 mA									0.4 V									2.7 V								
	Cases E, F	Cases <u>1</u> / 2	Test no.	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 5/	29 13/	30	31	32	33	34	35	36	37
		MIL-STD- 883	method	3007	=	=	=	3	3006			77	ä										3009		=			3	=	=	-	3010	3	"	n	n	77	3 :	2	11
		Symbol		Vol					V _{он}					V _{IC}									11.4	I _{IL6}	114					ILS	ILS	IH13	Інэ	IH11					IH9	Інэ
		Subgroup		-	Tc = +25°C																																			

See footnotes at end of device types 03, 04, 11, and 12.

							TABLI	E III. <u>Grou</u>	p A inspec	tion for de	evice types	03, 04, 1, H > 2 0 V	1, and 12	TABLE III. Group A inspection for device types 03, 04, 11, and 12 – Continued. Ferminal conditions foils not designated may be H > 2.0 V: or 1 < 0.7 V: or open.	ril G								
			Cases E, F	-	2	3	4	2	9	7	8	6	10	11	12	13	. 41	15	16		Limits		Г
Subgroup	Symbol	_	Cases <u>1/</u> 2	2	3	4	2	7	80	6	10	12	13	14	15	. 11	18	19	20 Mea	Measured terminal		<u> </u>	Unit
		method	Test no.	Clear	Clock	Α	В	ပ	O	EnP (GND L	Load	EnT	O _D	Qc	QB	Q _A Ri	Ripple carry	Vcc	~	Min	Max	
-	I _{IH14}	3010	38 13/	5.5 V							GND							5	5.5 V C	Clear	_	100	Αμ
Гс = +25°C I _{ІН10}	Інто	=	39		5.5 V						-								5	Clock	.,	200	
	IH12	=	40			5.5 V					-								=	⋖		100	_
		=	41				5.5 V				-									В			_
		3	42					5.5 V			=									C		,,	_
		3	43						5.5 V		=									٥		"	_
		=	44							5.5 V	_ _	GND	GND							EnP		n	
	IH10	=	45							GND	=	5.5 V (GND						7	Load		200	_
	I _{IH10}	2	46							GND		GND	5.5 V							EnT	7	200	_
	los	3011	47	4.5 V	2/				4.5 V		_	GND		GND							-15	-100 n	mA
		77	48					4.5 V							GND					တိ	,,	,,	_
		3	49		=		4.5 V				-				0	GND				QB	n		
		3	20	=	=	4.5 V					_	-				9	GND			ď	,,	n	,,
		n	51	=	-	4.5 V	/9I	/9	4.5 V		=	7	4.5 V				ŋ	GND	- E 0	Ripple carry	*	-	
	Іссн	3002	52	5.5 V	2.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V	=	5.5 V	5.5 V							Vcc		31	_
	Іссн	77	53	5.5 V	2.5 V	5.5 V	5.5 V	5.5 V	5.5 V	5.5 V)	GND	5.5 V									31	_
	lccr	"	54	GND	GND	GND	GND	GND	GND	GND	"	GND	GND									32	_
	Iccr	п	55	GND	GND	GND	GND	GND	GND	GND)	GND (GND									32	_
2	Same te	ests, termin	Same tests, terminal conditions, and limits as for subgroup 1, except T_C = 125°C and V_{IC} tests are omitted.	, and limit	s as for s	ubgroup	1, except	$T_{\rm c} = 12$	5°C and	/ _{IC} tests	are omitt	ed.											
3	Same te	sts, termin	Same tests, terminal conditions, and limits as for subgroup 1, except T_c = -55°C and V_{IC} tests are omitted.	, and limit	s as for s	ubgroup	1, except	$T_{\rm c} = -55$	°C and \	ic tests a	are omitte	jq.											

See footnotes at end of device types 03, 04, 11, and 12.

	Unit																																																						
	its		Max																																																				
	Limits		Min																																																				
	Measured	terminal																		See <u>9</u> /																																			
	16	20	Vcc	4.5 V		: =	=	=			= :		: =	=	=	=		ш	=		=	=	=	=	=	=	ш	=		-	=	=	=	=	=			=		=	= :			"	=	=	=				=	=	=	3 3	
	15	19	Ripple carry	_	. :	: 3	=	=	"			.		=	=	=		=	=	.		-	=	=	=	=	=	I	- :	Е-	-	=	=		=		. -	=		=			: :	=	=	-	=				=	=	=	×	_
	14	18	ď	_		:	=	=	_		= :	- -	: -	-	J =	=	I		=	_ -	-	ı	=	=	ب			I		-	_ =	=	-				. -			I			: :	=	=	=	=			. -	-	J =		Ι.	_
	13	17	ď	Γ	. :	: :		=	I			.		_] =	=			=	Ι.		-		=	L						=	=						-				. :	I =	=	=	-		Γ			=	-	=	Ι.	_
	12	15	ő	٦				=						I	: =	-						-			L																	. :	I =			-		٦			=		=	Ι.	_
n).		14	o	_		: =	=	=	-					=	=	=			=	- -	-		-	-	I			=		-	_ =	=	-	-	=		. -	-	-	=		- -	. -	=	=	-		I	- -			J =	=	Ι.	
TABLE III. Group A inspection for device type 03 — Continued. erminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.7 V or open).	10	13	EnT	٧	В.	∢ <	c &	a ≪	A	В	Α.	∢ (я <	∢ ⊲	(B	A	Α	В	A	۵ ک	ე ⊲	(⊲	c &	Α (٧	В	Α	∢	В	∢ =		=			В			=	н	п	= :			=	=	-		н			4	ζ =	=	=	=
<u>e 03</u> – Conti 0 V or L ≤ 0	6	12	Load	A		: =	=	=	"	ш	= :		: =	=	=	=	=		=		=	=	=	=		=		=			=	=	=	=	=		: =	· œ) =	=		= -	: <	< =	=	В	=	=	∢:		· ·) =	=	= -	∢
device type lay be H≥2	8	10	GND	GND		: =	=	=	=				: =	=	=	=	=	=	=	- -	=	=	=	=		=	=	=			=	=	=	=	=		: =	=	=	=		= =		=	=	=	=	=			=	=	=	-	
spection for ssignated m	7	6	EnP	٧	а :	: 3	3	=	"					=	=	=		=	=		=	=	=	=			=	=			=	α	o =	-	A			=	-	=			: 3	=	=	-	=	=			=	=	=		
oup Ain	9	8	Ω	A	В.	∢ <	ς α	4	∢	В	∢.	۱ ک	n <	∢ ⊲	(B	4	Α	В	A	∢ (ם מ	(⊲	c ac	Α	V	В	Α	٧	В	∢ =	=	=	=	=	В	∢ •	∢ <	< α) =	=		.	: :	=	=	۷	=		.		=	=	=		z
.BLE III. <u>Gı</u> ınditions (pi	5	7	ပ	٧	В.	∢ <	((1)	ο ≪	۷	В	∢ .	∢ ι	n <	∢ ⊲	(A	⋖	Α	В	۷	∢ (ე ⊲	(<	c ac	Α (<	В	Α	۷	В	∢ =	=	=	=	-	В	∢ .	∢ <	ν α	ω ω	В	∢:			=	=	В	=				4	ζ =	н	= :	=
TA Terminal co	4	2	В	A <u>8</u> /	В.	∢ <	c a	ο ∢	٧	В	∢ .	∢ (α <	< ⊲	C C	∢	Α	В	A	∢ (ე ⊲	(⊲	(4	Α .	4	В	Α	A	В	∢ =	=	=	=	-	В	∢ .	∢ <	< Œ	ω ω	В	¥:		. "	=	=	В	=				4	ζ =	=	= :	=
	3	4	∢	A <u>8</u> /	а.	∢ <	ς α	Δ «	A	В	∢.	∢ (ж <	∢ ∢	C 40	A	А	В	A	∢ (ם ס	(∢	c œ	Α (4	В	Α	Α	а .	∢ =	=	=	=	=	В	∢:		=	=	n				=	=	=	=	-			=	=	=	= :	-
	2	3	Clock	A <u>8</u> /	۷ ا	n <	۷ ۵	В	٧	Α	В.	۷,	Α 0	۵ ۵	< <	В	Α	Α	В	۷,	Α α	ם ס	۷	В	A	Α	В	٧	۷ ۷	n <	۷ <	۲۵	В	Α (Α	۷ ۷	n <	۷ ۷	В	Α	۷	В	۷ <	τ α	Δ «	Α .	В	Α	< ι	8 <	٤ ٥	: <	В	∢.	٧
	1	2	Clear	B <u>8</u> /	∢:	: 3	3	3			= :		: =	=	=	=			=		=	-	=	=	=			=			ď	۵ ۵	ζ =	=	=		. -	=		=	= :			=	n	=	=				α) <	X Y	∢ :	В
	Cases E, F	Cases <u>1</u> / 2	Test no.	56	57	28	60	61	62	63	64	65	99	68	69	20	71	72	73	74	76	72	78	79	80	81	82	83	84	82	80	98	68	06	91	92	93	94	96	97	98	99	100	101	103	104	105	106	107	108	110	111	112	113	114
		MIL-STD- 883	method	3014	= :	: =	-	=	=		= :		: -	-	=	=			-		-	=	-	-	-	=		=			=	-	=	=	=				-	=				-	=	-		=		. -	=	-	=	=	-
		Symbol		Func-	tional	tests 7/	7																																													_			
		Subgroup		7	Tc = +25°C																																																		

81

See footnotes at end of device types 03, 04, 11, and 12.

Unit																																						_
Limits		Max																																				_
		Min																																				
Measured	terminal																				See 9/																	
16	20	Vcc	4.5 V	-	=	=	3	-	-	"	=	"	"	-	-	=	-	=	'n	=	-	=	=	-	=					=	=	-	=	=	-	-	=	
15	19	Ripple carry	, ,		"	31	,,	=	n	n		n	n				=	=	n	I	_					н	н		н							=	=	
14	18	Q	٦	٦	I	"	,,	Γ	"	"		"	"		"			"	"	I	"			"		Г	н		Н			٦			Ι			Ī
13	17	₈ O	٦	39	"	"	"	н	n	n	I	n	n	7	"		I		n	٦	"		I			н	н	н	н	н		٦				н		
12	15	o	٦	39	"		"			"		"	"	Н	"				"	٦			Н			Г			н			I					=	
11	14	g	7	"	"	=	"	I		n	7	'n	'n	I		=		=	"	"			٦		-	Н			7		=			=				
4 5 6 7 8 9 10	13	EnT	В	я	"	¥	,	=	"	"	n	,,	n	*	В	*	"	4	"	"	В	37	"	"	"	,,,	Α		н		-	=		=	=	=	-	ŀ
6	12	Load	В		"	=	3	=	"	"		"	"	3	=	-	=	-	"	,,	=			=		н						=			=	=	-	1
8	10	GND	GND	*	"		,,	-	-	"	=	,,	,,	,,	-				"	"			=	-	-						=	-		=	-		=	
7	6	EnP	В	3	"	A	,,	-	В	,,	=	,,	ņ	,,	-		-	٧	"	,,	В		=	4	-						=	-		=	-	-	=	
9	8	٥	В	9	,,	A	3	3	В	n	,,	V	,,	"	3	"	,,	,,	,,	,,	В	,,	"	4	n	"	В			=		=			=	=	-	
5	7	O	В	3	,,	,	,,	,,	n	n	n	٧	n	"	"	"	"	В	n	,,	4	,,	"	В	n	"	"		н	Α		=	-		=	=		
4	2	В	B 8/		,,	,,	,	,	4	"	,,	В	,,	"	A	31	"	В	"	,,	A	,,	"	"	"	,,	,,			В	-	-			-	A	-	
3	4	⋖	A <u>8</u> /	,	"	В	9	9	"	"	,,	"	"	,	"	,,	,,	۷	,,	"	,,	*	"	В	"	,,	A			В	-	-	V	=	-	В	-	
2	е	Clock	A <u>8</u> /	В	4	∢	В	∢	V	В	A	٧	В	A	∢	В	⋖	٨	В	4	⋖	В	٧	∢	В	Α	Α	В	Α	A	В	∢	A	В	∢	⋖	В	1
1	2	Clear	/ <u>8</u>		,,	,,	,,	,,	-	=	=	=	,,		=			-	=	=			=	=	=					=	=	=		=	=		=	1
Cases E, F	Cases 1/ 2	Test no.	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	1
	MIL-STD- 883	method	3014	=	=	=	=	=		=	=		=	=	=	=	=	=	=	=	=		=	=	=						=	=	=	=	=	=	=	
	Symbol		Func-	tional	tests	/2																																
	Subgroup		7	Tc = +25°C																																		

See footnotes at end of device types 03, 04, 11, and 12.

	Unit																																																					
	nits		Max																																											_	_	_	_			_	_	
	Limits		Min																																																			
	Measured	terminal																	/0000))																																		
	91	20	Vcc	4.5 V															: =	=							и					-		и		ш			u	н	и		: :							. =			3 1	
	15	19	Ripple carry		= :	: 3	=	=	3	=					=				: =	=	=	=					"	n	3	3 1		-	=	=		=		=	=			= :	-	1 1	: _	=	=		2 2	. =	=	=	"	2
	14	18	ď	_	= :	: :	Γ=	=	_	=	= ;	Ι.			=		Ι.		-	J =	=	I			_ =	-	I	=	=	٠ ـ		-	Γ=	=	_	=		Ε=	=	٦		= :	Ι=	=	٦	=	=		2 =		=	I	n	=
	13	17	g	_	= :	: 3	=	=	I	=					=					=	=	-			_ =	-	=	=	=	Ι.		-	=	=	_	=		-	=	I		3 3	: =	=	٦	=	n		2 =	. =	=	=	n	
	12	15	ő	_			=	=						I	=			.	: =	=	=	=			_ =		=	-	=			-		=	I							: :	: =	=	_		y			. =	=		31 3	a
		14	Q	٦					=				: :		=				: =	=	=		=	= :	Ι=		ш	=		"			=	ш				=			и		: =		7	=	n			= 3	=		"	
TABLE III. Group A inspection for device type 04 – Continued. erminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.7 V or open).	10	13	EnT	٨	а.	∢ <	∢ α	۵ ۵	< <	В	Α.	∢ (a <	< <	В	¥.	∢ ,	ю.	∢ <	c m	\ <	⋖	В	∢ .	∢ 0	۵ ∢	: ∢	В	∢	∢ 1	a <	< <	< α	۵ ۷	< ∢	В	∢ <	≺ œ	Δ <	Α	В	∢ .	∢ 0	۵ ۵	< <	Y	A	α :	2 2	: 3	=	=	= :	2
<u>9 04</u> – Cont 2.0 V or L ≤	6	12	Load	۷			=	=	3	=			: :	=	=				: =	=	=	=	=				=	-	=				=	н	-		= 3	=		н	н	= 3	: =	=	,,		=	3 :			В	=	= :	
device type ay be H≥2	80	10	GND	GND			=	=	=	=			: :	=	=	-			: =	=	=	=	=			-	=	-	=			-	=	=	-	=		=	=	=	=		: =	=	=	=	=				=	=	-	:
spection for	2	6	EnP	A <u>8</u> /	s :	: 3	: 3	=	3	=				-	=				: =	=	=	=	=			-	=	-	=		= 3		=	,	-	=		=	=			= 3	: =	=	=	=	В	а -	∢ =		=	=	-	
roup Ain	9	ω	۵	∢	а.	∢ <	< α	۵ ۵	<	В	Α.	∢ (e <	<	В	Α.	∢ (а .	∢ <	c @	<	۷	В	∢ .	< 0	۵ ∢	< <	В	⋖	∢ 1	a <	< <	< α	۵ م	< <	В	∢ <	ν α	<	Α	В	∢ .	∢ 0	۵ ۵	<	Α	A		ء د	m =	=	=		2
BLE III. G	2	7	ပ	A	ω.	∢ <	< α	Δ 4	< <	В	A ·	∢ (я <	ζ <	М	A	∢ 1	м .	∢ <	c @	Α	A	В	∢ .	< 0	Δ <	. Α	В	A	∢ 1	m <	< <	< α	Δ 4	. Α	В	Α «	∢ œ	Α 🗸	Α	В	∢ .	∢ 0	Δ 4	< <	Α	Α		= 0	m =	=		Α.	V
T⊿ Terminal co	4	2	В	A	м .	∢ <	< α	۵ ۵	< <	В	A ·	∢ (8	ζ <	а	A	∢ 1	m ·	∢ <	c m	ν «	٧	В	∢ .	< 0	Δ <	<	В	A	∢ 1	m <	< <	< α	0 4	. Α	В	∀ <	< α	4	Α	В	∢ .	∢ 0	۵ ۵	< <	Α	Α	= -	= 0	m =	=	=	∢.	∢
	3	4	A	A <u>8</u> /	а.	∢ <	< α	۵ ۵	< <	В	Α.	∢ (a <	ζ «	В	A	∢ ,	а .	∢ <	c m	Α .	٧	В	∢ .	∢ 0	۵ «	< <	В	٨	∢ 1	a <	< <	< α	0 4	< ∢	В	∢ <	ν α	Δ <	Α	В	∢ .	∢ 0	۵ ۵	< <	Α	Α				=	=		=
	2	က	Clock	A <u>8</u> /	∢ 1	В «	۷ <	τ α	4	Α	В	∢ <	Κ α	Δ 4	<	В	۷.	< ι	n <	< <	В	A	٧	В.	∢ <	ĸ a	٧	A	В	Α.	∀ 0	n <	۷ ۷	χ <u>α</u>	Α (Α	В	۷ ۷	В	Α	Α	В	∢ <	τ α	2 ≪	Α	Α	В	∢ (В	r B	Α	۷.	В
•	1	7	Clear	B <u>8</u> /	Α:			35	=	=			: :	-	=				: =	=	=	=	=			-		-	=	= :	. "	-	=	=	-	=			=				: =	35	=	В	Α			= 3	,,	,,	3 :	=
	Cases E, F	Cases <u>1</u> / 2	Test no.	26	57	28	99	61	62	63	64	65	99	68	69	70	7.1	72	73	75	9/	77	78	79	80	82	83	84	85	86	87	80 80	68	90	92	93	94	c S	97	86	66	100	101	103	104	105	106	107	108	109	11:	112	113	114
		MIL-STD- 883	method	3014			=			=		.		=	=					=	=	=	=		: :	=	=	=	=	= :				=	=				=		=					=	=				=	=	= :	=
		Symbol		Func-	tional	tests	7		•	!			,			!			_,_	-	1	•	!					•	!					<u>, ,</u>	•	 .l					!				1	4						-		
		Subgroup			Tc = +25°C																																																	

83

See footnotes at end of device types 03, 04, 11, and 12.

	Unit																																													
	ıts		Мах			_		_	_	_		_	_	_		_			_			_	_		_	_	_	_	_	_	_	_	_	_	_		_		_		_	_				
	Limits		Min																																											
	Measured	terminal																				See <u>9</u> /																								
	16	20	Vcc	4.5 V	=			=	=	=	=	=	=	=	=	=					=								=	=	=	=	=	=	=	=		=	=	=	=	=	=			
	15	19	Ripple carry		-	"		-	=	"	-	-	I	-	7	-														-	,,	,,	,	=	-			=		-	=	=	-			
	14	18	Q	I	н	**	н		"	_	=	=	I	"	7		н	"	"	н		н	"	H	"	н	L	"		Н	"	"	Γ	=	"		н	"	I	"		٦			I	
	13	17	ď	I	=	**	н		٦	=	=	=	I	-	7		н	I		н		н		н		н	Γ						I	=		7	н	=	I		=	٦	=		н	
	12	15	ď	I	=				7				I	-	7		н	I		н	7	н	н	н		н	I						=			7	н	=		-		I	=			
<u>.</u>		14	g	٦	=	н	н	=	I	_	=	=	I		_	=	н	I		н	_	н		н		н							=	×		I	н	=	=		=		-		н	
ed. V or open	10	13	EnT	В	-			=	-	A	-	-	-	-	-	=					-								-	-	-	-	=	=	-	-		-	-	-	=	-	=			
TABLE III. Group A inspection for device type 04 – Continued. minal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.7 \text{ V}$ or open).	6	12	Load	В	A			В	-	"	=	=	-	-	٧	В	н			н		н		н		н							=	=			н	=	=	-	=	-	"			
ce type 04 ∋ H ≥ 2.0 V	8	10	GND	GND				-		-	-	-			-	-					-												=	-		-		-	-		-					
on for devi			EnP		_	,,	,,	,,		"	-	-	_	_	_																		=	=		"			"	_	=		_			
A inspecti ot designa	9		П					٧		-	=	-				_			В														_	A					-		_					
III. <u>Group</u> ons (pins n	_			A								=																														_				
TABLE nal conditic	2		O			-		В		A			-		-	_	_	_	В			_		н	A	_				-	-	-		В	-					٧			-		-	
Termin	4	2	М	A	=		н	В	В	A	=	=	=	=	=	=	н	-	=	н	=	н	=	н	В	н	=		=	=	A	=	=	В	=	=	A	=	=	В	=	=	=	=	н	
	က	4	Α	8/ A	=			-	=	=	=	=	-	-	=	В			-		-	Α	-		В		-	Α	-	=	В	=	=	=	=	-	Α	=	=	В	=	=	٧	-	77	
	2		Clock	<u>8</u> / A <u>8</u> /	A	В	Α	В	٧	٧	∢	В	٧	В	4	A	В	Α	Α	В	A	Α	В	Α	Α	В	Α	Α	В	٧	٧	В	A	⋖	В	A	Α	В	٧	٧	В	٧	∢	В	Α	
	-	2	Clear	A 8	=	"	"	"	"	В	∢	=	=	n	В	٧			=		=	ш	=		=	ш	=	=	=	=	=	=	=	=	ņ	"	ш		=		=	=	=			= -55°C.
	Cases E, F	Cases <u>1</u> / 2	Test no.	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	+125 and T _c
		MIL-STD- 883	method	3014	=			-	=	=	=	=				-					-				=			=	-	=	=	=	=	=	=	-		=	=	=	=	=				Repeat subgroup 7 at T_c = +125 and T_c = -55°C.
		Symbol		Func-	tional	tests	/Z								•																															Repeat subg
		Subgroup		7	Tc = +25°C																																									8

See footnotes at end of device types 03, 04, 11, and 12.

	Unit																																																							
	Limits		Max																																																	_				
			Min																																																					
	Measured	terminal																	ò	oee a																																				
	91	20	Vcc	4.5 V		=	=					=	=	н	=		.		: =	=		=	=		н	=	=	= :		-	=			=			=		=	=	=			я	n	=		: =	=		=	=	=	= :	= =	
	15	19	Ripple carry	×	۳.	,,								и						"		=	=					39	, ,	-	-			I	7	I	٦		"									: =						Ι.	- F	7
	14	18	Q	×							Н			Τ			Ι.		. -			н	=		Г			I		-	_ 			Н			٦		"				Н									"		= .	Ļ	_
	13	17	ď	×		n	-		.			=		Н			.		. -			-	=		H					-	٦.	-	=						"				"	"	=	I		: 3		-] =	-		= "	, ,	:
	12	15	တိ	×	_ =	=						=	=	н			.			c =			-				=			-	- ا		=								=		и	"	=	I		: "		-] =				,	:
Œ.		14	ď	×	-	=		= :		: :		=	=	н	=	= =			: =	=		=	=		н		=	= :		=	E =			=	н		_		=	=	=		н		=	=			=	ı	=	n	=	= .	٦.	_
TABLE III. Group A inspection for device type 11 – Continued. Terminal conditions (pins not designated may be $H \ge 2.0~V$ or $L \le 0.7~V$ or open).	10	13	EnT	А		=			= 0	a <	< ∢	В	Α	Α	В	Α,	∢ (n	∢ <	τ α	٥Δ	. ∢	В	Α	Y	В	Α	A	ω <	٢ <	< 0	<u>a</u>	ο «	. Α	В	٧	A		=	В	=		н			=		: =		ш	=	n		Α:		
.0 V or L≤	6	12	Load	В		=	٧		= =		"	=	=	и					: =	=		=	=		н		=	=			=		н				=	"	=			В	н	"		=	Α:	: =	α	2 42	Δ <	n			= 0	В
device type ay be H≥2	8	10	GND	GND		=							=	н	=							=	=	=		н	=	=			-	-	=	=			=			=	=			н	=	=	- -	: =		=	=	=		= :		:
pection for signated ma	7	6	EnP	A <u>8</u> /	3 3	3	n	= :				=	=	н	=		.			=		=	=				=					11		=	n		=	a =	=	4	=			"		=		: <	∢ =		=		=			:
ins not des	9	8	٥	<u>8</u> 8∕		=	۷	V.	< ι	a <	ζ 4	В	Α	Α	В	∢ .	۱ ک	n «	∢ <	τ α	ο 4	. Α	а	A	Α	В	A	V	ω <	τ <	< 0	Ω α	ο «	Α.	В	Α	=		=	=	В		=	=	=	=		: =	<	ς =	=	-				
ABLE III. Gonditions (p	9	2	ပ	В		=	٧	Α.	∢ (a <	< <	а	V	٧	В	۷,	∢ (n •	∢ <	< α	Δ 4	. ⊲	В	٧	٧	В	V	⋖	Θ <	< د	< €	<u>a</u>	ο «	< <	В	٧	=		=	=	В	н	н	A	=	=		: =	α	a =	=	n	=	∢:	= 3	
T/ Terminal o	4	2	В	В			٧	Y.	۷	В <	ζ 4	В	Α	Α	В	Α,	۷ ۷	я «	Α <	τ α	ο 4	Α	В	A	Α	В	A	¥	Θ <	ζ <	< 0	<u>α</u>	ο «	¥	В	A				н	В		н	А	=	=		: =	α	o =		"	н	۲		:
	3	4	⋖	B <u>8</u> /		=	۷	Α.	۱ ک	a <	(∢	В	V	Α	В	۷,	۱ ک	n «	∢ <	< α	ο «	: ⊲	В	A	Α	В	A	V	ω <	٢ <	< 0	ם מ	2 ⋖	< <	В	A	=		=	=	=		н		=	=		: =	=	=	=	=	=	=		:
	2	3	Clock	B <u>8</u> /	∢ ۵	ο «	٧	В	۷,	∢ ۵	2 4	. Α	В	Α	Α	В	۷,	∢ (Σ <	۷ ۵		Δ <	. ∠	В	Α	Α	В	Α.	Α 0	<	∢ <	ζ α	В	٧	Α	В	⋖	∢ 0	۵ ۵	В	Α	В	Α	Α	В	Α	Α (n <	< α	۵۵	< <	В	Α	В.	۷,	4
	1	2	Clear	B <u>8</u> /	a <	< <	В	В	м.	∢ =	-	"	=		=				: -	=	-	=	=	=		=	=	=		-	"	"	=	=	=	-	-		=	=	=	-	=	=	=	75		: <	< =	=	=	n	"	В	м .	4
	Cases E, F	Cases 1/ 2	Test no.	26	57	59	09	61	62	63	65	99	29	89	69	70	71	7/2	7.4	75	92	2.2	78	62	80	81	82	83	84	000	90	88	88	06	91	92	93	94	96	97	86	66	100	101	102	103	104	105	106	108	109	110	111	112	113	114
	<u>ن</u>	883	method	3014		=	=	= :			=	=	=		=			:		-	=	=	=	=		=	=	= :	- -	=		=	=	=		=	=		=	=	=	-		=	=	=		:	=	=	=	=	=	= :		
		Symbol		Func-	tional	7/	1	1					•						•	•		•		•			1					•						1	,	•	1		•——	1						•				1		
		Subgroup			rc = +25°C																																																			

See footnotes at end of device types 03, 04, 11, and 12.

Unit Max Limits Min Measured terminal See <u>9</u>/ Vcc 16 Ripple carry 15 4 18 ď 13 17 တ္မ 12 15 တွ g 14 TABLE III. Group A inspection for device type 11 – Continued.

Terminal conditions (pins not designated may be $H \ge 2.0$ V or $L \le 0.7$ V or open).

5 7 8 9 10 12 13 EnT Load GND GND Ω ပ В В В Α Clock 3 /8 ∀ Clear Repeat subgroup 7 at T_c = +125 and T_c = -55°C. 2 Cases E, F Cases 1/ Test no. MIL-STD-883 method 3014 Symbol Func-tional tests Z/ Subgroup Tc = +25°C ∞

See footnotes at end of device types 03, 04, 11, and 12.

	Unit]
	Limits		Max																																																				-
			Min																																																				
	Measured	terminal																	See 9/	i																																			
	16	20	Vcc	4.5 V			=				=	=	н				=	=	=	=	=	н	= :			=	=	=	=	н	=	-					=				=	=	,,	"	н	н			: =	=	=	=	=	: 3	
	15	19	Ripple	×	۳ ـ	3	=	= :	: :		-	=		- -	: -		=	-	=	=						-	"	"	,,	н	=	-			-					-	=	=	=					- :	Ι-	٦ ۲		-	=	: =	
	14	18	Q,	×	」 "	=	=				I	=		_ -	: =	: =	= =	=	_	=	=	I		٠.	_ =	=	I	=	=	٦	=	= ;	Ι.		_] =	=	I.		-	= لـ	=	I		н	٦		- :	Ι=	=	٦		=	: =	
	13	17	ď	×	_ "	"	=		-		-	=		Ξ.	: -		=	=	_	=				-	Ξ-	-	=	=	=	٦	=		- -		I	: -	=			-	J =	"	,			I	= :	: :	: =	=	٦	. =	=	: 3	
	12	15	g	×	_ =	=	=				=				. -			=	I	=				.			=		=	٦	=	-								Ξ	=	3	3			u	= :		: =	=	٦			: 3	
	11	14	ď	×	_ =	=	=				=				: =			=	=	=		ш		.			=	=	=	I	=	-								=		=			н	н	= :		: =	=	٦	l =	-		
iued. .7 V or ope	10	13	EnT	٧			=		= 0	უ ⊲	< <	В	٧	∢ (n <	∢ <	ς œ) 4	<	В	Α	Α	В.	∢ .	∢ (pΦ	۷	(B	4	Α	В	⋖ .	< 0	В <	∢ ⊲	В	Α	∢ (я «	∢ ⊲	ς œ	A	٧	В	Α	A	В.	∢ •	∢ 0	۵ ۵	< <	В	= :		
12 – Contir) V or L ≤ 0	6	12	Load	В		-	¥	= 3	: :	-	-	=		- -	: =		=	=	=	=		н				-	=	=	=	н	=	-		- -	-	-		, ,		-	=	=			н			- -	: =	=	n	=	=		
evice type y be H≥2.0	8	10	GND	GND		-	=			-	-	=		- -	: =		=	=	=	=		н				-	=	=	=	н	=	-		- -	-	-				-	=	=	=		н			- -	: =	=	=	=	=		
TABLE III. Group A inspection for device type 12 – Continued. minal conditions (pins not designated may be $H \ge 2.0 \ V$ or $L \le 0.7 \ V$ or open).	7	6	EnP	A <u>8</u> ∕	3 3	21	,,	= :	: =		=	=		- -	: =	: =	=	-	=	=			= :	- -		=	-	=	=		=	,		= 3	=	=				-	=	=				=		- -	: =	=	=	В	= -	∢ ∢	•
s not des	9	8	۵	В			٧		= 0	n <	۷ ۷	В	A	Α (α <	∢ ⊲	ς α	ο 4	<	В	Α	Α	В.	۷٠	∢ (ם מ	۷	(m	٧	Α	В	Α.	∢ (ω <	۷ ۵	В	Α	Α (я «	∢ ⊲	ς α	Δ <	٧	В	Α	Α	В.	∢ .	∢ 0	۵ ۵	:	-	= :	. В	
LE III. Gro	2	7	O	В		=	A		= 0	n <	ζ <	В	A	∢ (n <	∢ ላ	ς α) 4	<	<u>а</u>	Α	Α	ω.	∢ .	∢ (n 4	< ⊲	(m	Α	Α	В	∢ .	∢ (m <	∢ ላ	(B	Α	∢ (ж «	∢ ⊲	ς α	4	A	В	Α	A	а.	∢ .	∢ 0	۵ ۵	(3	=	= :	- B	
TAE erminal con	4	2	В	В		=	A		= 0	n ⊲	< <	В	∢	Α (Σ <	∢ <	ς α) A	· 4	В	Α	Α	а.	۷,	∢ (n 4	۵.	(B	A	Α	В	Α.	< 0	м <	∢ ⊲	<u>а</u>	Α	∢ (m <	∢ ⊲	ς α	1 <	A	В	Α	Α	В.	Α,	∢ 0	۵ ۵	, ,	=	= :	: M	
Ter	3	4	Α	B <u>8</u> /		=	A		= 0	n <	(∢	В	⋖	Α (α <	∢ ⊲	τ α) 4	<	В	А	Α	В.	۷,	∢ (n d	۷	(m	A	Α	В	Α.	∢ (m <	∢ ⊲	<u>а</u>	А	4 (ж «	∢ ⊲	τ α	1 <	٧	В	Α	A	а.	∢ .	∢ 0	۵ ۵	(=	=	= :	: =	
	2	3	Clock	B <u>8</u> /	∢ 0	۵ ح	A	а.	∢ <	α α	2 ⋖	A	В	Α,	< 0	מ ⊲	۷ ۷		A	A	В	Α	∀ (я .	∢ <	ν α	1 4	< <	В	Α	A	В	∢ •	∢ 0	n ⊲	< <	В	∢.	∢ (ם <	۷ ۷	В	A	A	В	A	۱ ۲	м -	∢ <	τ α	1 4	В	4	n <	-
	1	2	Clear	B <u>8</u> /	m <	τ «	В	В	В <	∢ =	=	3					=	=	=	=			= :				=	=	-		y	,									=	=	=		"				: =	=	"	,,	= :	: =	
	ases E, F	Cases <u>1</u> / 2	Test no.	99	57	20	09	61	62	63	65	99	29	89	69	71	22	73	74	75	92	2.2	78	79	80	82	83	84	85	98	87	88	89	90	9.1	93	94	95	96	68	000	100	101	102	103	104	105	106	107	100	110	111	112	113	
		MIL-STD- 883	-	3014		=	=	= :		=	=	-			: =	: =	=	=	=	=							=		=		-	=			-	=			: :	-	=	-	-			=	= :		: =	-	=	=	= 1	: =	
		Symbol		Func-	tional	lesis 7/	1																																																
		Subgroup		7	Tc = +25°C																																																		

See footnotes at end of device types 03, 04, 11, and 12.

Unit Max Limits Min Measured terminal See 9/ 4.5 V 16 Vcc Ripple carry 15 14 18 ď 13 ď 17 12 g 1 14 g TABLE III. Group A inspection for device type 12 – Continued. conditions (pins not designated may be H \geq 2.0 V or L \leq 0.7 V or open). EnT 13 Load 12 GND GND 10 8 9 Ω 8 Terminal conditions (B 8/ ပ В 3 ٧ Clock Clear Repeat subgroup 7 at T_c = +125 and T_c = -55°C. 7 Cases E, F Cases 1/ Test no. MIL-STD-883 method 3014 Symbol Functional tests \overline{Z}' Subgroup Tc = +25°C ω

See footnotes at end of device types 03, 04, 11, and 12.

		Uni		Σ	su						=			"	=		"					=		=	3	"	3	n
	Limits		Мах		40	40	29	,,		"	32	"	"	,,	29	32	29	32	29	32	29	32	19	19	33	"	a	,,
	Ė		Min	22	3	"		и	=	"		я	ш	,,		"	-			"	"	"	×	,,	39	"	39	*
		Measured	terminal	ď	Clk to carry	Clk to carry	CIK to QA	CIk to Q _B	CIk to Q _c	CIk to Q _D	CIk to Q	CIk to Q _B	CIK to $Q_{ m c}$	CIK to Q _D	CIK to	CIk to Q _A	CIk to Q _B	CIK to Q _B	CIk to Q _C	CIk to $Q_{\rm c}$	CIK to Q _D	CIk to Q _D	EnT to C _v	EnT to	Cir to	Cir to Q _B	Cir to Q _c	Cir to
	16	20	Vcc	5.0 V	u u	»	3	,	3	9	a.	"	,,	"	3	,	3	×	и	,	»	,	,					
	15	19	Ripple carry		OUT	OUT																	OUT	OUT				
	14	18	Q 4	TUO			OUT				OUT				OUT	OUT									OUT			
	13	17	Q _B					OUT				OUT					OUT	OUT								OUT		
	12	15	တိ)	OUT				OUT						OUT	OUT							OUT	
open).	11	14	o _o						0	OUT			0	OUT					0	0	OUT	OUT						OUT
and 12. 0.7 V; or	10	13	EnT	4.5 V	3	n n	3	,,	,) "	3	"	99	,							0	0	Z	z				
TABLE III. Group A inspection for device types 03, 04, 11, and 12. Terminal conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open)	6	12	Load	4.5 V 4	3	n n	3	,,	,	,,	y.	*	,,	"	GND	,,	*	"	я	,,	n n	,,	.5 V	4.5 V	GND	u	3	3
e types 0 e H≥ 2.0	80	10	GND	GND 4	"	n n	*	,,	,,	,,	ņ	"	,,	"		,,	"	n	я	,,	n n	n	.4	. 4	3	u	3	3
for deviced may b	7	6	EnP G	4.5 V	"	n	"	,,	,,	,,	3	,,	99	,,									4.5 V	4.5 V				
nspection designat	9	8	D E	4																	Z	Z	4	4				4.5 V
Sroup A i	2	7	O																Z	Z							4.5 V	4
BLE III. onditions	4	5	В														Z	Z								4.5 V	4	
TA erminal o	е	4	A												z	Z									4.5 V	4		
_	2	3	Clock	Z	3	n	"	,,	,	,,	*	"	99	,,	-	,,	,	"	я	"	,,	,,	,,	3	12/ 4.	3	n	29
	_	2	Clear	8 4.5 V	6	, 0		. 2	3	,	. 2	. 9	, 2	8	6	, 0	,	, ,	3	, 4	. 2	, 9	" L	8	<u>N</u>	, 0	,	2
		,	(se	4 168	5 169	6 170	7 171	8 172	9 173	0 174	1 175	2 176	3 177	4 178	5 179	6 180	7 181	8 182	9 183	0 184	1 185	2 186	3 187	4 188	5 189	9 190	7 191	8 192
	Cases E, F	Case 1/	Test no. (Device types)	7 154	8 155	9 156	0 157	1 158	2 159	3 160	4 161	5 162	6 163	7 164	8 165	9 166	0 167	1 168	2 169	3 170	4 171	5 172	6 173	7 174	8 175	9 176	0 177	1 178
	0 -	ű	Te (Devi	157	2 158	3 159	160	161	3 162	7 163	3 164	9 165	166	167	2 168	3 169	170	171	3 172	173	3 174	175	176	1777	2 178	3 179	180	181
				151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
	MIL-STD- 883	_		3003 (Fig 6)	=		=	"	"	=	=	"	"	n	3	"	"	"	"	19	n	"	"	=	=	=	=	n
		Symbol		Р _{мах}	фин	фн∟4	9НП ф				t _{PHL5}				фще	фнге	энт ф	97Н-ф	фине	фнге	энт ф	фние	2НПф	t _{PHL7}	фниз	фнгв	фнгв	фниз
		Subgroup		9 Tc = +125°C																								

See footnotes at end of device types 03, 04, 11, and 12.

		'n		∀	ů	-	=	=	Ĭ	_	-	-	-	,,		-	3	4	-	_	-	1		Ĭ	•	-	4	4	
	Limits		Max		26	26	41	3	-	=	45	3	3	3	42	48	42	48	42	48	42	48	28	28	46	46	46	46	
=	Lin		Min	22	3	=	=	*	-	=	=	n	3	3	=		=	=		=			n	×	n	y	39	y	
		Measured	terminal	OR to	CIk to Carry	CIK to carry	Olk to	CIK to	Cik O O	S S S	Cik Q o	S S S S	CIK to	CIK to	OK to	OK to	CIK to	S S S	CIK to	Cik to Oc	CIK to	CIk to Q _D	EnT to carry	EnT to carry	Cir to	Cir to	Cir to	Cir to	1
٩	16	20	Vcc		•		•	,																		•	•		
!	15	19	Ripple carry																										
;	14	18	Q.																										
-	13	17	Q B																										
<u>-</u>	12	15	ő																										
. oben).	11	14	O _O																										
od 12. ∇; o		13	EnT																										
03, 04, 11 0 V; or L	6	12	Load																										
ce types be H≥2.	8	10	GND	-																									
ated may	7	6	EnP																										
inspections of designa	9	8	Q																										
Group A	2	7	O													group 9.													
ABLE III.	4	2	В													s for subç													ပွဲ
Termina	3	4	٨													nditions a													t T _C = -55
•	2	3	Clock													Same terminal conditions as for subgroup 9.													10, ехсер
-	1	2	Clear													Same te													subgroup
(Cases E, F	Case <u>1</u> /	es) 12	182 179	177 183 180 194	178 184 181 195	179 185 182 196	180 186 183 197	187 184	188 185	189 186	184 190 187 201	185 191 188 202	186 192 189 203	190	188 194 191 205		190 196 193 207	191 197 194 208	198 195	193 199 196 210	194 200 197 211	195 201 198 212	202 199	197 203 200 214	198 204 201 215	199 205 202 216	200 206 203 217	Same tests, terminal conditions, and limits as for subgroup 10, except T_{C} = -55° C.
-		MIL-STD-		3003 1 (Fig 6)		=	=		2	=	=	3	3	,		2	*	3	3	3	*	,,	, ,	-	=	=	=	3	, terminal α
-		Symbol		F _{MAX} 10/		t РН∟4	фия	<u>1</u>	<u> </u>	<u> </u>	фниз	<u> </u>	<u> </u>	<u> </u>	фие	фн⊾е	фие	фн∟е	фине	фн∟6	9н⊓4	фн∟6	4рш т	t _{PHL7}	фн∟в	t _{PHL8}	t _{PHL8}	t _{PHL8}	Same tests,
		Subgroup		10 Tc = +125°C		•	•				•						•		•	•									11

See footnotes at end of device types 03, 04, 11, and 12.

- 1/ For case 2, pins not referenced are NC.
- 2/ Apply one pulse prior to measurement as follows:

- 3/ Apply 0.7 V for types 03 and 11; apply 2.0 V for types 04 and 12.
- I_L limits (μA) min/max values for circuits shown: 4।

Terminals					Circuits			
A	A	В		ပ	۵	ш	ш	ŋ
Clear 03 -160/-400 -30/-300	_	-30/-3	300	-120/-360	-160/-400	-120/-360	-0/-100	-16/-400
	n n	"		n	n	n	n	n
Clear 11 " Clear 11	"	,			n	"	-150/-450	n
Clear 12	n n	"		-290/-630	n			n
" " dua	n n	"		-120/-360	n	-120/-360	-150/-380	n
A, B, C, D " "	n n	n		-160/-400	n	-150/-380	-0/-100	n
Toad -30/2-800		-30/-	300	-290/-630	-320/-800	-120/-360	-160/-400	-320/-800
				-340/-860	050, 000	-240/-720	-300/-760	050 050
Clock -160/-400 -0/-100		-0/-1	00	-290/-630	-160/-400	-180/-420	-0/-100	-160/-400
			1					

For types 03 and 11, set outputs to 9^{th} count ($Q_A=1$, $Q_D=1$, Q_B and $Q_C=0$) prior to measurement. 2

For types 04 and 12, set outputs to 15th count (Q_A , Q_B , Q_C and Q_D = 1) prior to measurement.

- Apply GND for types 03 and 11; apply 4.5 V for types 04 and 12. <u>⁄9</u>
- Only a summary of attributes data is required.

/

- $\underline{8}/$ A = 3.0 V minimum; B = 0.0 V or GND.
- 9/ H > 1.5 V; L < 1.5 V; X = don't care.
- $\underline{10}$ / The F_{MAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. For type 04, circuit C, 20 MHz minimum.
- 11/ The limit for circuit B shall be 23 ns.
- 12/ For types 03 and 04, apply one clock pulse prior to test. For types 11 and 12 apply one clock pulse prior to test and another pulse during test.

13/ I_{IH13} limit for types 11 and 12; 40 μA maximum.

IIH14 limit for types 11 and 12; 200 µA maximum.

		Unit		>	-	=	=	=	=		=	-	=	=	-	,,		n	"	,,	"	n	Ψ,	,,	,,	n	3	"	z	3	n	"	3	n	n	3	,		z
	Limits		Max	0.4	н	н		a						-1.5	=	"	н	и	и	"	11	п	⁄∂I			/SI			/₹	/SI	20	n	u	n	п	n	n	=	40
	Lin		Min						2.5	"	"	"	"										\S			/₹			/2	%∣									
		Measured	terminal	g	Oc	Q_{B}	Q	Ripple	g	ာီတ	QB	Q	Ripple carry	U/Ē	CK	A	В	С	D	EP	L	ET	∢ 0	۵ د	D	U/D	CK		EP	ET	U/Ē	CK	A	В	C	D	EP.	٦	ET
	16	20	Vcc	4.5 V		ш	-		=					=	=	-			11	11	11	и	5.5 V	"	"	n	"	"	n	39	n	"	"	n	n	n	,,		ä
	15	19	Ripple carry					4 mA					4 mA																										
	14	18	Q				4 mA					4 mA																										1	
	13	17	Q			4 mA					4 mA																											1	
en).	12	15	Ö		4 mA					4 mA	Н																											1	
6. 7 V; or ope	11	14	, o	4 mA					4 mA	-																												1	
05 and 0 ; or L ≤ 0.	10	13	ы	4.5 V			-	0.7 V	-		=		=									-18 mA								0.4 V								-	2.7 V
TABLE III. Group A inspection for device types 05 and 06. Terminal conditions (pins not designated may be $H \ge 2.0 V_1$ or $L \le 0.7 V_1$ or open).	6	12	_	0.7 V				-	-				=								-18 mA		GND "	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,			0.4 V					┡	<u> </u>	H	П	-	2.7 V	_
tion for de	8	10	GND	GND					-					=	=				n.		1			,,	,,	n	,,) "	n	3	n	"	,,	n	n	,,			×
p A inspect designate		6	E E	4.5 V G				0.7 V	-				-							-18 mA									0.4 V								2.7 V	-	
s (pins no	9	8	۵	0.7 V			-		2.0 V		=		=						-18 mA	-1					0.4 V				0							2.7 V	2	-	
TABLE condition	2	7	O	0.7 V					2.0 V	-			=					-18 mA	-1					7 7 0	+										2.7 V			1	
Terminal	4	5	ш	0.7 V	-			=	2.0 V		-	-	=				-18 mA	-,					>	>										2.7 V			_	1	
	3	4	∢	0.7 V				=	2.0 V	-		=	=			-18 mA	-						0.4 V										2.7 V	H			_	+	_
	2	3	S S	2/				=	=				=		-18 mA	•											0.4 V					2.7 V					_	+	_
	1	2	۵/۱۵	4.5 V				0.7 V	4.05 V				0.7 V	-18 mA												0.4 V					2.7 V		-				1		
	s E, F	se <u>1</u> /			2	3		2 (7	3	6		11 -1	2	3	4	2	9	7	8	6	20	- c	3 6		5	26	27	28		0	-	2	3	4	35	و	37
	Cases E,	O- Case <u>1/</u>	Test no.			. /	7					<i>-</i>	_	_	-	1	1	1	1	1	1		_	7 0	2 2	2	2	2	2	2		3	3	3	3	3	3		
			method	3007	-	-	=	3	3006	-	-	3	3										3009	"	3	3	3	n	n	3	3010	"	3	n	n	n	я :	:	2
		Symbol		Vol					V _{Он}	5				V _{IC}									I _{IL12}			1113			I _{L14}	1115	1117								IH19
		Subgroup		1	Tc = +25°C																																		

See footnotes at end of device types 05 and 06.

		⊃ 		n.																
	Limits		Max	100				"	n	"	"	200	-100	"		"	=	34		
	Ë		Min										-15	"	"	33	"			
		Measured	terminal	۵/n	CK	∢	В	ပ	Δ	EP	٦	ET	တိ	တိ	Q	Q	Ripple carry	V _{CC}		
	16	20	Vcc	5.5 V	=	=	=		=		н	=	=			н				
	15	19	Ripple carry														GND			
	14	18	Q													GND				
	13	17	QB												GND					
pen).	12	15	တိ											GND						
TABLE III. Group A inspection for device types 05 and 06. Terminal conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open)	11	14	g										GND							
TABLE III. Group A inspection for device types 05 and 06. Inditions (pins not designated may be $H \ge 2.0 \text{ V}$; or $L \le 0.7$?	10	13	ET									5.5 V	5.5 V	=	=			GND		
device typ be H≥ 2.0	6	12	٦								5.5 V		GND			н	=	5.5 V	mitted.	tted
pection for	8	10	GND	GND	=		-		-	=	н	=		=	=	н	=	=	sts are o	out 1 except $T_c = -55^{\circ}C$ and V_{ic} tests are omitted
oup A ins	7	6	EP							5.5 V			5.5 V	н	н	н		GND	nd V _{IC} te	V _{ic} test
SLE III. GI	9	8	Q						5.5 V				5.5 V	н	н	н	"	GND	125°C a	55°C and
TAE	2	7	Э					5.5 V					5.5 V			и		GND	ot T _C = +	i- = -i
Termi	4	2	В				5.5 V						5.5 V				ш	GND	1, excep	1 excer
	3	4	٧			5.5 V							5.5 V	н	н	н		QNĐ	ubgroup	upatono
	2	3	СК		2.5 V								2/	н	н	н		"	s as for s	s as for s
	1	2	U/D	5.5 V									5.5 V			н	11	GND	, and limits	and limit
	Cases E, F	Cases <u>1</u> / 2	Test no.	38	68	40	41	42	43	44	45	46	47	48	67	09	51	25	Same tests, terminal conditions, and limits as for subgroup 1, except $T_{\rm C}$ = +125°C and $V_{\rm IC}$ tests are omitted.	Same tests terminal conditions and limits as for subgra
	-GLS-TIM	883 method		3010				"	3		"	n	3011			н	н	3008	sts, termina	sts termin
		Symbol		I _{IH18}								11.20	80					၁၁၂	Same te	Sametes
		ıbgroup		_	= +25°C														2	3

See footnotes at end of device types 05 and 06.

	Unit																																																			
	Limits		Мах																																																$\left. \right $	
			Min																																																$\frac{1}{2}$	
	Measured	terminal																	See 6/	il -																																
	16	20	Vcc	4.5 V								=	н			-			=							-		=	н	=						н							=							19	n	
	15	19	Ripple carry	×	/ <u>₹</u>	-	-	"	=		-	-	=	,,		-	: "	-	=	_	7		-	_	c _	ı	. "	٦	I	=		-	-	=	=				-	-	=	-	=]	c I	: _	7	I	
	14	18	ď	×		ı	I	_	_	Ξ.	c _	_	I	Ι.		J :	= =	-	, -	I	"				=	L	_	I	I	_	_ :	I I	-	ب ر	I	"	┙.	_	I		7	ェ	I	_ =		: 3	=	=	33	"	I	
	13	17	ď	×	」		n	I	-	= 3	-	J =	"	,,	Ι-	-	: 3	-] =	=					3	-	3	"	=	=	- :	Γ=	"	Ι	_	"		. 1	= =	=	=	٦	=	: :				=	33	"	I	
	12	15	ő	×			"		=		I	=	=	, ,		=	: 3	-] =	=	n			: =	=	=		"		=	- :	Ε=	=	=	=	,,		. -	J =	=	=	=	=	3 =			=	=	-	"	7	
		14	ď	×	L <u>5</u> /		=	,,	-		"	=	39		. "	-	. "	I	: =	-	"				=		ı _	I		"	- -	-	-	=	=	,,,			-	=	=		=	- -			-	=	-	"	"	
TABLE III. Group A inspection for device type $05 - \text{Continued}$. minal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.7 \text{ V}$ or open).	10	13	ET	В			-	-			-	,,		,,					=	=			: <	¥ <	۷ M) =	,	-		=			-	-						-	=		=				<	۷ ۷	В	11	z	
Continue r L ≤ 0.7 `	•	12	<u> </u>	В	m .				*									l							_			В	1				l														, ,,			В	m	
Npe 05 – ≥ 2.0 V o	0,	1	_		В,	∢ =		,	-	-	-		-			_		Ī	-						-	-		_	1	-	_		Ī		_	_		1	Ī		-		-	_	_			-		Ш	_	
nay be H	8	10	GND	GND		-	-	=	-		-	=	=			-		-	=	=				: =	=	-	27	=	=	=		-	=	-	=				-	-	=	=	=				=	=	-	29	"	
pection fo	7	6	Н	В	: :	: 3	"	=	=		=	=				=		=	=	=	Α	۷ı	m =		=	=		=		=	=	=	=	n	=				=	=	=		=	= <	∢ <	∢ (n =	=	=	31	3	
oup Ains	9	8	О	В	, .		-		,	: :	"	-		,,		"	: -		"	,,	"					=	۷			=				n	-					-			=							"	2	
E III. Gr itions (pir	5	7	ပ	В			-	=	-	: :	=	,,,				, ,			3	=		,				,,	"	=						n						-	=	"								A	∢	
I ABL inal cond	+	2	В	В					=		n	,				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			,,	_		,,			-	,,,		=		_				,,	L	_					=	"	=					_		A	_	
Term	,	,									_					_		-															-	ĺ	=				-			,								'		
	3	4	∢	/ B		=	=	=	3		=	=	=	= :	: 3		: 3	3	3	3	"	3 3		: =	=	"	⋖	=	,,	=	= 3	=	=	=	=			: :	"	=	=	"	=	= 3	: =		=	=	=	В	В	
	2	3	Š	/B B 2/	∢ (n <	В	∢	m	∢ (۵ ۵	c m	A	В.	∢ 0	> ۵	∢ 0	۵ ۵	В	4	В	۷ ۷	m <	∢ <	< α	۸	(m	4	В	4	α <	α α	۵	α	٧	В	∢ (m <	(M	۷	В	A	В	∢ (α <	∢ (<u>α</u>	۵	В	В	¥	
	-	2	۵/n	A 5/			"	"	3		=	"	=		: -	-	: -	=	=	=				: =	=	=	-	=	В	=	3 3	-		=	=				-	=	=		=					=	-	27	n	= -55°C.
	Cases E, F	Cases <u>1</u> / 2	Test no.	53	54	20 22	57	58	59	09	62	63	64	65	99	/9	89	20	71	72	73	74	75	9/	7.8	62	80	81	82	83	84	88	87	88	88	06	91	92	93	95	96	26	86	99	100	101	102	104	105	106	107	= +125 and $T_{\rm C}$ =
		MIL-STD- 883	method	3014	= =	=	=	=	=		=	=	=		: :	=	: =	=	=	=				: =			=			= 1		=	=	=	=			: -	=	=	=	=	= 1		: =	:	=			27	3	$_{\rm r}$ = $_{\rm C}$ at T $_{\rm C}$ = $_{\rm r}$
		Symbol		Func-	tional	tests 4/	<u> </u>				_1_	J	1				J		1		<u></u>			J		1_	1	<u> </u>				_1_	1		ļ					I	<u></u>		- 1		_ _					I J		Repeat subgroup 7 at T _C
		Subgroup			Tc = +25°C t																																															80

See footnotes at end of device types 05 and 06.

	Unit																																																
	Limits		Мах																																														_
	Lin		Min																																														
	Measured	terminal																	See <u>6</u> /																														
	16	20	V _{cc}	4.5 V			=		: =	=	=		=			=	=	н	= :			: =	=	=			=		н			: =	=	=		=	=		: =	=	=		н	= :			=	, ,	: =
	15	19	Ripple carry	×	/ <u>2</u>	=	=	n	: =	=	=		=	3 =		=	3			: :			=	=		. "	=	=	н	٦			I	I	_ =	c	_	Τ.		=	=	=			-	-	=		. =
	14	18	ď	×	_ -	ı	I		_ =	╘	_	٦	I	Ι.		ı	Ŧ	٦	٦:	Ξ.	Ι.	_	ı	I		_ =	=	-	٦	I		: =	=		* -	_ ـ	I	Ι.	-	_ =	=	٦	٦	I :	Ξ-	_	ı	Ξ.	_
	13	17	ď	×	" ا		n	Ι-		,,	٦		3	z :	Ι-		,,	٦			- :	Ι-	=		٦.	: :	,,	I	н			: 3			× -	_	I			-] =	"		I.		=	٦	: :	=
	12	15	တိ	×	7 :		11				I			= =			"	Г		= :	, .				н		,,	=	н						× -	٦_	н			=		"	н	١ -				3 3	: =
		14	g	×	L <u>5</u> /	-		3 =		=	3	=	3 1			=	31	I		= 3		: =	=						"			: =		=	× -	J _	Ŧ		: :	=	=		=	= :		-	=	3 3	: =
ued. 7 V or open	10	13	Ы	В					: =	=	=	"	=	3 :		=	=		= :			: =	-			: 3						: =	∢	A	а =	=	=		: =	=	=		=				=	2 2	: =
TABLE III. Group A inspection for device type $06-$ Continued. Ferminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.7 V or open).	6	12	_	В	ω <	∢ =	=	3 3	: =	"	=		=			=	=		=				=					-	н				=	=		<u>~</u>	В	۲.	: =	=	=				= 3	-	=		=
vice type 0 be H≥2.0	8	10	GND	GND			-		: =	=	=		= :			=	=	н	= :			: =	=			: 3						: =	=	=		=	=		: =	=	=		н			-	=	3 3	=
ction for de nated may	7	6	Д	В		. 3	n	- 3	: =	=	=	=	=			=	=		= :				=						н		⋖・	< α) =	=		=	=		: =	-	=					-	=	27 27	: =
up Ainspe s not desig	9	8	Δ	В	: :		-		: 3	=	,,			z :		"	=			:	3 =	: =	=			: :	=		н			: =	3	=		4	=		: :		=		н			=		3 3	: =
LE III. Gro ditions (pin	2	7	ပ	В		-	-		: 3	-	=	,,	=			"	=		я		= 3	: 3	-		. :	1 3							3	-		4	=		: =	"	-					-			=
TAB rminal con	4	2	В	В		-			: 3	,,	3	,,	=			"	=		n :		= 3	: 3	=		= :	: :						: =	3	=	= 3	4	=			"	-					-	=		=
Te	3	4	A	В			-	= 3	: =	-	=	=	=	= 3		"	31	"	n	= :	3 3	: 3	"			: :	-	2	н			: =	=	=		4	=	3 :	: -	n	-		n			-	=		=
	2	3	쑹	B <u>5</u> /	< 0	n «	В	< 0	n <	c B	⋖	В	∀	В.	۷ ۵	ο Φ	(B	A	В	Α (В	α α) <	В	4	a ⊲	ς α	1 <	В	٧	В	α α	а В	A	В «	۲ C	<	В.	α	٥	c B	4	В	∢ .	a <	A B	4	В «	В
	1	2	U/D	A <u>5</u> /			n		: =	-	=	,,				=	=		=				-				=	,,	н	"	: :		=	-		=	=	В	: =	-	-		=			-		* *	: 3
	E, F	ss <u>1</u> /		3	+ 1	0 (0	7	e (n (2	3	4	10 (2 2	. ~)		2 (3	+ 10		7	3			- 0	3	4	200	0 4		6	0,	- 0	3	4	0 "	2 6	3	6	0	_	2 2	2 4	5	10	108
	Cases E, F		Tes	2		Ω n	2.	25.	Ω Q	9	9	9	9	Ö	9 9	0 6	9	7	7	7.	7.	, ,		7	7.	2 8	οα	80	8	8	80 0	Σ	0 80	80	δ	n o	6	6	55 0	5 0	0 0	6	10	2	10	10	10	5 6	10
		MIL-STD- 883	method	3014		-	=		. =	=	=		=	- -	- -	=	=		= :				=					=			- -		=	=	- -	=	=			=	=	=			- -	=	=	3 3	: 3
		Symbol		Func-		rests 4/	<u> </u>								•		•				•	•	•		•							•	•			•					•			•	•				
		Subgroup		7	Tc = +25°C																																												

See footnotes at end of device types 05 and 06.

	Unit		×																					
	Limits		Min Max																					
	q		Ξ																					
	Measured	terminal											See 6/											
	16	20	Vcc	4.5 V	=	=	-	=	=	-	-	-	-	-	-	-	-	-	=	-	=	-		
	15	19	Ripple carry	Н	"	"			n	n				н	н	n	н	٦		n	н	I	7	
	14	18	ď	Н	I	7	_	I	I	_	٦	н	н	٦	٦	н	Н	٦	=	"		=	н	
	13	17	QB	Н	"	39		٦	"			Н	39		27	٦				"			н	
	12	15	တိ	I	"		=	"	=	=		٦	"			"			=	"		=		
, ue	11	14	ගී	7	,,		=		27	=			27		"			"		"		=		
Terminal conditions (pins not designated may be H > 2.0 V or I < 0.7 V or open)	10	13	ET	В						"				99		99					A	Α	В	
TABLE III. Group A inspection for device type 06 – Continued. conditions folius not designated may be H > 2.0 V or 1 < 0.7 V	6	12	٦	Α	"	"	-	=	3	n		n							=			-		
r device typ	8	10	GND	GND	=		=			=												=		
spection for	7	6	ЕР	В	"	"	n	"		n									∢	٧	В	=		
Group Ain	9	∞	Ω	٧	n	=	=			n	"		n	=		n	=		n		=	n	"	
rable III.	2	7	ပ	Α	"	,,	=	=	=	=	"	-		,,		-	=		"	-	=	n		
Terminal	4	2	ш	٧	"	9	-			-	"	"	27	,,		=	=		"	=	=	n	н	
	က	4	∢	Α	=		=	=	=	"							"	"	"	"	"	"	39	
	2	င	Š	√ <u>2</u> /	В	A	В	٨	В	A	В	A	В	A	В	A	В	A	В	A	В	A	В	
	1	2	۵/۱۰	/5 B		"	n	n	n	n		"		"		"				"	н		н	= -55°C.
	Cases E, F	Cases <u>1/</u> 2	Test no.	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	Repeat subgroup 7 at T_c = +125 and T_c = -55°C.
		MIL-STD- 883	method	3014		-		=	=		-			-	-		-	-	=		-			group 7 at T _C ∍
		Symbol		Func-	tional	tests	4																	Repeat sub
		Subgroup		7	c = +25°C																			8

See footnotes at end of device types 05 and 06.

Unit MHz ZHW ns 24 15 24 15 22 22 32 30 28 22 28 22 Limits 25 25 Measured terminal U/ D to RC U/ D to RC U/ D to RC U/ D to RC CK TO RC CK TO RC CK TO QA CK TO QA CK to Q_n ET to RC ET to RC 5.0 V 16 Vcc Ripple carry OUT OUT OUT OUT 710 15 OUT 4 18 OUT OUT OUT ď OUT OUT OUT OUT OUT OUT OUT 13 g DOUT OUT 12 g TUO DOUT OUT OUT 1 1 1 g (pins not designated may be H ≥ 2.0 V or L ≤ 0.7 V or open). GND GND GND GND 10 $\mathbb{Z}\mathbb{Z}$ ZΖ TABLE III. Group A inspection for device type 05- Continued. \<u>Z</u> NI 5.0 ∨ 5.0 V GND 5.0 V 5.0 V 5.0 V 12 Z Z Z z GND GND 8 10 GND 6 굡 GND GND GND 5.0 V GND ω GND GND GND GND 5.0 V GND GND N GND IN 7/ GND IN Z/ GND /6| N| N /<u>Z</u> NI /<u>Z</u> NI /Z N GND GND Z 상 Z z 5.0 V GND GND U/D GND GND 5.0 V z z z z Cases 1/ Test no. 116 130 108 110 111 117 118 120 121 124 125 126 127 129 133 134 135 128 132 MIL-STD-883 method See fig. 7 Symbol tpHL15 t_{PLH12} tpHL11 PHL5 tpHL7 PHL11 t_{PLH7} t_{PLH9} **t**РLН9 F_{MA}× t PLH5 Tc = +25°C Subgroup თ

See footnotes at end of device types 05 and 06.

Unit			us	3	=	=	×	"	,,	"	"	"	×	×	33	**	33	"	n	"	,	:	*	3	3	"	3	3	MHz	MHz	
its		Мах	26	"	-	=	"	"	"	"	37	35	26	"	n	**	"	"	"	"	28	18	33	26	28	18	33	26			
Limits		Min	3	a	=		"	n	n	"	"	"	n	"	"	n	39	n	"	n	я :	=	3	ä	3	3	3	3	25	25	
Measured	terminal		CK TO QA	CK TO QB	CK TO Q _c	CK TO Q	CK TO QA	CK TO QB	CK TO Q _c	CK TO Q _D	CK TO RC	CK TO RC	CK TO QA	CK TO QA	CK TO Q _B	CK TO QB	CK TO Q_{C}	CK TO $Q_{\rm c}$	CK TO Q _D	CK TO Q _D	ET to RC	ET to RC	U/ D to RC	U/ D to RC	ET to RC	ET to RC	U/ D to RC	U/ D to RC	CK to Q,	CK to Q,	:
16	20	Vcc																													
15	19	Ripple carry																													
14	18	Q																													
13	11	ď																													
12	15	o																													
11	14	g																													
10	13	E																													
6	12	_																													
8	10	GND																													
7	6	Э																													
9	8	٥																													
5	2	O														6															
4 5 6 7 8 9 10																Same conditions as for subgroup 9.															
4	2	М														is as for s															
3	4	A														condition															
2	က	Š														Same															
-	2	U/D																													
Cases E, F	Cases <u>1</u> / 2	Test no.	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	
	STD-	poq	e e	.7																											•
	MIL-STD- 883	method	See	fig. 7	=	=	=	=	=	-		-	-	=		=		=		-		-	-	-	=	4	-	-	"	4	
	Symbol		t _{PLH5}				t _{PHL5}				фниз	t ргн12	t _{PI H5}	t _{PHL5}	t _{PLH5}	t _{PHL5}	фгн5	tpHL5	t _{PLH5}	t _{PHL5}	t _{PHL7}	Г РLН7	t РНL11	6НПф	t _{PHI 7}	t _{PLH7}	фн111	фгнэ	F _{MA} ×	F _{MA} ×	V 44
	Subgroup		10 t	rc = +125°C			**				ţ.	<u> </u>	- E	**	<u>t</u>	ţ	44	ţ	4.7	42	<u> [</u>	7	ţ	<u> </u>	1+2	1+5	<u> </u>	<u> </u>	<u>14</u>	<u> "</u>	<u> </u>

See footnotes at end of device types 05 and 06.

	Unit			ns	,	,	,,	,	,	,		,	ļ		,	,	ļ		,		,		,	2	3	,	,	2	2	MHz	1
			X	22 n	,,		,,	32	, ,,		,,	32	33	2	2	2	5	2	2	2	2	8	24	2	28		24	7	5	Σ	V
	Limits		Min Max	3 2	, ,	, ,	, ,	" "	, ,	, ,	, ,		3	. 2	32	. 2	3	. 2	 	. 2	" "	28	2		2	2	. 2		. 22	25	35
	Measured	terminal	2	CK TO QA	CK TO Q _B	CK TO Q _c	CK TO Q ₀	CK TO QA	CK TO Q _B	CK TO Q _c	CK TO Q ₀	CK TO RC	CK TO RC	CK TO QA	CK TO QA	CK TO QB	CK TO QB	CK TO Q _c	CK TO Q _c	CK TO Q ₀	CK TO Q _o	ET to RC	ET to RC	U/ D to RC	U/ D to RC	T to RC	ET to RC	U/ D to RC	U/ D to RC	-	
	16	20	Vcc	5.0 V	,,	,,	,,	,,) "	,,	,,) ") ") ") ") "	,,) ") "	,,) "	Э "	Э "	ر "	<u>"</u>	Э "	Э "	ر "	٦ "	,,	,,
	15	19	Ripple carry	-								OUT	OUT									OUT	OUT	OUT	3	,,	"	"	"		
	14	18	Q E -	OUT				OUT						OUT	OUT															OUT	110
	13	17	ď		OUT				OUT							OUT	OUT													H	1
	12	15	o o			OUT				OUT								OUT	OUT											H	± IC
	11	14	g				OUT				OUT									OUT	OUT									OUT	110
or open)	10	13	ЕТ	GND	,,	,,	,	GND	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	,,	Z	Z	GND	GND	Z	Z	GND	n	,	, ,,
<u>36</u> .				ŋ				9																					_		
ce type (6	12	٦	Z	y,	n	3	Z	"	n	y	"	5.0 V	5.0 V	"	"	"	n	"	n	"	5.0 V	2.0 ∨	2.0 V	5.0 V	5.0 V	5.0 V	2.0 V	2.0 V	5.0 V	/\ U \
on for devi	8	10	GND	GND	"	"	"	GND	,,	"	"	"	,,	"	"	"	"	"	"	"	"	"	"	3	=	"	"	3	3	,,	"
TABLE III. Group A inspection for device type 06, inns forms for designated may be H > 2.0 V or 1 <	7	6	EP	GND	n	и	"	n	"	и	n	"	"	п	"	"	"	п	"	n	n	"	"	"	×	"	n	"	"	11	"
III. Group	9	8	۵	GND	"	"	"	GND	"	"	5.0 V	"	"	GND	"	"	,,	"	"	5.0 V	GND	5.0 V	"	"	3	GND	"	79	y	11	201
TABLE	5	7	ပ	GND	,,	,,	5.0 V	GND	,,	5.0 V	,,	,,	"	GND	,,	,,	,,	5.0 V	GND	"	"	5.0 V	,,	3	×	GND	,,	u	n	"	// 0 3
Terminal conditions (nins not designated may be H > 2.0 V or 1 < 0.7 V or one)	4	2	В	GND	"	5.0 V	"	GND	5.0 V	"	"	,,	"	GND	GND	5.0 V	GND	,,,	,,	"	**	5.0 V	,,	3	ä	GND	"	39	31	77	// 0 2
-	3	4	٧	GND	5.0 V	n	"	5.0 V	,,	n	n	GND	GND	5.0 V	GND	"	,,	n	"	n	"	5.0 V	"	3	3	GND	n	ä	"	n	/\ 0 9
	2	3	충	/Z NI	,,	"	"	/2 "	,,	"	,,	,,	,,	"	,,	,,	,,	"	,,	n	"	/Z "	,,	/Z N	z	/Z NI	Z	/Z NI	z	Z	N
	-	2	U/D	5.0 V	"	"	"	"	,,	"	"	,,	,,	GND	,,	,,	,,	"	,,	"	"	5.0 V	5.0 V	Z	Z		GND		Z	5.0 V	UND
	Cases E, F	Cases 1/ 2	Test no.	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146		148	149	150	151	152	153	154	155	150
	MIL-STD-	883	method	See	fig. 7	3	3	3	"	3	3	79	"	я	79	79	"	я	79	3	3	3	79	79	я	3	3	29	99	77	,,,
		Symbol		t _{PLH5}				t _{PHL5}				tpHL15	t PLH12	t _{PLH5}	t _{PHL5}	t _{PLH5}	t _{PHL5}	t _{PLH5}	t _{PHL5}	t _{PLH5}	t _{PHL5}	t _{PHL7}	t _{PLH7}	фнгл	€НПф	t _{PHL7}	t _{PLH7}	фнгл	фгнэ	F _{MA} ×	L
		Subgroup		6	rc = +25°C																										

See footnotes at end of device types 05 and 06.

	Unit			us	ņ	=	= :	3	2 :	: 3	,,		ä	"	"	"	11	"	,,	n,	,	:		×	3	"	n,	3	2	MHz	MHz	
			Мах	56	"		= ;	36	,	: :		40	38	56	36	56	36	56	36	56	36	32	87	37	32	32	28	37	32			
	Limits		Min	3	,,			33	= :	: :	"		y.	"	"	11	11	11	"	"	**			n .	*	,,	"	*	3	25	25	
	Measured	terminal		CK TO QA	CK TO Q _B	CK TO Q _c	CK TO Q ₀	CK TO QA	CK TO QB	2 C C C C C C C C C C C C C C C C C C C	3	CK TO RC	CK TO RC	CK TO QA	CK TO QA	CK TO Q _B	CK TO Q _B	CK TO Q _c	CK TO Q _C	CK TO Q _D	CK TO Q _D	ET to RC	EI 10 RC	U/ D to RC	U/ D to RC	ET to RC	ET to RC	U/ D to RC	U/ D to RC	CK to Q _n	CK to Q _n	
	16	20	Vcc																													
	15	19	Ripple carry																													
	14	18	ď																													
	13	17	ď																													
	12	15	တိ																													
n).	11	14	ď																													
TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be $H \ge 2.0$ V or $L \le 0.7$ V or open).	10	13	ET																													
e type 06. V or L ≤	6	12	_																													
TABLE III. Group A inspection for device type 06. ions (pins not designated may be H≥2.0 V or L≤	8	10	GND																													
inspectio		о	品																													
Group A not design	9	ω ω	Ω																													
ABLE III.																	٠.															
T/condition	2	7	O														for subgroup 9.															4.5 for F
Terminal	4	2	Ф																													and V _{cc} =
	က	4	∢														Same conditions as															c = -55°C
	2	င	Š														Same															except T
	1	2	۵/n																													ogroup 10
	Cases E, F	Cases 1/ 2	Test no.	157	158	159	160	161	162	163	5	165	166	167	168	169	170	171	172	173	174	175	1/6	177	178	179	180	181	182	183	184	Same tests, conditions and limits as for subgroup 10 except T $_{\rm C}$ = -55 $^{\circ}C$ and V $_{\rm CC}$ = 4.5 for F $_{\rm MAX}$
		MIL-STD- 883	method	See	fig. 7			=				=								=				=	=	=		=	*	,,	n	inditions and
		Symbol		фгне				t PHL5				фнглэ	t РLH12	фгн5	t _{PHL5}	фгн5	tpHL5	фгнь	tpHL5	фгн5	t _{PHL5}	t _{PHL7}	PLH7	фнгл	фгнэ	t _{PHI 7}	фент	фн111	фгнэ	FMAX	F _{MAX}	Same tests, α
		Subgroup		10 t	Tc = +125°C			<u></u>					-							-1		<u> 1</u>										11

See footnotes at end of device types 05 and 06.

1/ Case 2, pins not referenced are N/C.

2/ Apply one clock pulse prior to test as follows:

3 V ±.2 V $0 V \pm .2 V$ I_{IL} limits (μA) min/max values for circuits shown: _{(හි}

Parameter	Parameter Terminals				Circuits			
)	A	В	0	D	Э	ш	9
I _{IL12}	A, B, C, D			-160/-400		-0.5/-400		
1113	U/¯, CK, L			-160/-400		-135/-370		
I _{IL14}	EP			160/-400		-150/-385		
11.15	ET			-140/-720		-280/-760		

Only a summary of attributes data is required. 4

H > 1.5 V; L < 1.5 V; X = don't care. /9

A = 3.0 V minimum; B = 0.0 V or GND.

2/

Apply one clock pulse with "L" low prior to test. /-

<u>8</u>/ Apply three clock pulses prior to test.

9/ Apply one clock pulse with "A" low prior to test.

 $\underline{10}'$ On (QA, QB, QC, and Qb) shall respond as specified in the truth table with the minimum F_{MAX} frequency input to "CK".

		Chit		>	=				=	=	=				=	3	= :	= :		: 3	: 3	: .		γn	,,	n	"	3	n	11	3	n	n	, ,	n	"	"	*	"	n	"	*	"	n	3	3
	Limits		Max	0.4	=		= :	3	3							-1.5	= :	= :		: 3	: :	: :	:	3/	m,	"	"	3	и	11	3	20	n		31	"	31	ä	100	2 =	"	3	"	и	"	ä
	ij		Min							2.5	11	,,	: 3		"									3/	"	,,	11	ņ	"	11	:															
		Measured	terminal	Q	g	တိ	တိ	Ripple carry	Borrow	Q	QB	တိပ	O G	Carry	Borrow	∢	а (ن ا	۵	Load	Clear	Count up	Count	A	В	ပ	D	Load	Clear	Count up	Count	٨	В	<u>ں</u>	Load	Clear	Count up	Count	- A	c @	ပ	٥	Load	Clear	Count up	Count
	16	20	Vcc	4.5 V	3		= 1	4.5 \	4.5 V						н	=					: 3			5.5 V	n	33	"	3		"	2	"	n		"	"	n	3	"	,	"	31	n	"	31	z
	15	19	⋖	0.7 V				2.0 V		2.0 V						-18 mA								0.4 V								2.7 V							5.5 V							
	14	18		0.7 V	,	, ,	1		2.0 V	H	"	33	: 3							4	-18 mA			GND	n	3	"		0.4 V			5.5 V	n			2.7 V			5.5 V	+	,	,,		5.5 V		
	13	17	Borrow						4 mA						-0.4 mA																															
.	12	15	Ripple B Carry					4 mA	_				Δm V O-		0-																								ł							
TABLE III. Group A inspection for device types 07 and 08. Terminal conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open).	11	14		0.7 V	,,	,				0.7 V	11	,,	T	0						-18 mA				GND	,,	,,	,,	0.4 V				5.5 V	,,		2.7 V				5.5 V		,,	,,	3			
7 and 08 or L ≤ 0.7	, C			0.						0.		>						mA W	,	-18				9		^		Ö				5.		>	2	i			5.	;	>	_				
e types 0 ≥ 2.0 V; c	10	13	O			0.7 V	1	/s				2.0 V	,					-18 mA	ξ							0.4 V	/							2.7 V					1	-	5.5 V					
for devic	6	12	٥				0.7 V	2.0 V				Ó	2.0 V					,	-18 mA								0.4 V							7 10	7:7				ļ		<u>_</u>	5.5 V				
nspection signated n	8	10	GND	GND	=	= :	_	=	=		=	= =				=		= 3	: 3	: 3	: 3	: :	:	3	"	3	"	3	n	33	=	31	n	: :	"	"	3	3	37	n	3	3	3	n	ä	3
Group A	2	თ	g			_	4 mA					-+	-0.4 mA																										ļ	<u> </u>						
ABLE III. litions (pii	9	∞	ď			4 mA						-0.4 mA																											ļ			L				
T.A binal cond	2		Count	_			:	0.7 \					700	> 0.7							0.7	-18 mA								0.4 V							2.7 V		L		L				5.5 V	
Term	4	2	Count						0.7 V	Н					2.0 V							,	-18 mA								0.4 \							2.7 V								5.5 V
	3	4	ď	4 mA						-0.4 mA																																				
	2	က	Q		4 mA						-0.4 mA																																			
	1	2	В		0.7 V			/3			2.0 V						-18 mA								0.4 V								2.7 V							5.5 V						
	ases E, F	Cases <u>1/</u> 2	Test no.	1	2	8	4	2	9	7	8	6	10		12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	59	30	31	33	34	35	36	37	38	39	40	41	42	43	44
			<u> </u>	3007			= :	=	,,	3006		3 3	: 3		"									3009	77	,,	"	*	и	"	*	3010	"	: 3	3	3	"	"	77	31	"	"	"	n	z	3
		Symbol		Vol					1	V _{ОН}						Vic								671	I			1110	1111			I _{IH17}		_1_	1	1	1	<u> </u>	E T	<u></u>	1		1			
	_	Subgroup		_	rc = +25°C					<u> ~ </u>						_								<u>1==</u>				<u>-=</u>	<u> </u>			<u> </u>							1=							

See footnotes at end of device types 07 and 08.

Max 34 Ä Measured terminal Q_A
Q_B
Q_C
Q_D
Q_D
Ripple
carry
Borrow 8 5.5 V Vcc 16 5.5 V 15 18 GND Clear GND Borrow 13 GND Ripple Carry GND TABLE III. Group A inspection for device types 07 and 08 — Continued. Terminal conditions (pins not designated may be $H \ge 2.0$ V; or L ≤ 0.7 V; or open). 4 5 6 7 8 9 10 11 12 5 7 8 9 10 12 13 14 15 Load GND = GND 5.5 V ပ Same tests, terminal conditions, and limits as for subgroup 1, except $T_c = +125^{\circ}C$ and V_{IC} tests are omitted. ۵ Same tests, terminal conditions, and limits as for subgroup 1, except T_c = -55°C and V_{IC} tests are omitted. GND GND GND ගී GND ď Count Up 5.5 V Count 4 GND ď GND a В Cases E, F Test no. Cases1/ 45 46 47 48 49 51 20 MIL-STD-883 method 3005 3011 Symbol 1 Tc = +25°C Subgroup 7 က

Unit

m_∎

See footnotes at end of device types 07 and 08.

		Chit																																															
	ts		Мах																																														
	Limits		Min																																														
		Measured	terminal																								See 7/																						
	_			>											Ī																																1	T	П
	16	20	Vcc	4.5 V	-				=	-	·		- -		=	=	=	-	=	-	-	=	=						=	=	=				-	=	=	=	-	=	=	-		=	=	-		-	-
	15	19	٧	∢ =	=				=		.				=	=	=	=	=	=	=	=		=		=			=	=					-	=	=	=	=	=	=	=		=		=		=	=
	14	18	Clear	A B 6/	i				=	-	.				=	=	=	=	=	=	=	=		=				н	=	=						=	=	=	=	=	=	=		=		Α	ω α	ე ⊲	α
	13	17	Borrow	Ι-	-				=	-			- -		=		=		=	=	=	=		٦	I	Ŧ				=						=	=	=	=	=		-	Т	I		-		-	=
en).	12	15	Ripple Carry	I =	-			-	=				- -		-		=	-	=	-	=	_	I							=	-					-	=	-	-	-		-			-	-		-	
rued. 7 V; or op	11	14	Load	∢=	=				=						=	-	-		=	=		=		=						=						-	=	=	-						В		= <	∢ =	-
TABLE III. Group A inspection for device types 07 – Continued. conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open).	10	13	C	∢=	=				=						=		=		=	=	=	=			н			н		=						=	=	=	-									=	-
th ≥ 2.0 V	6	12	D	4 =	-			-	=	-					-	-	-	-	-	-	=									=						-	=	-	-	-	-							-	
for deviced may be	8	10	GND	GND -					_		.			.		L	L		_	L										_							L		L							_	_	_	_
nspection lesignate		9		GI							_					_	_			_				7					_																_		_		Н
Sroup A ii			ď		-			-	-		-					-	-	-	I	-	-	-			I					=					-	-	-	-	-	-	-	_			エ			+	
SLE III. G	9	80	ıt Q _c	7 "	-				=	-	-	I	- -	-	-	-	=	-		=	-	=	=					н	I	=					-] =	-	-	-	=	-			I	٦	Ι)	_	1 7
TABLE III. Terminal conditions	2	7	t Count Up	A A	В	Α	В	A	В	∢	м .	∢	α <	∢ (Δ <		Δ	В	4	В	A	В	Α	-		=	-		=	=	-				-	=	=	=	=	=	=	-		=	-	=	- -	=	n
Terl	4	2	Count	∢ =	=			=	=	-	- -				=	=	=	=	=	=	=	=	"	В	Α	В	A	В	4	В	A	Β.	∢ (п «	∢ 0	۵ ۵	(A	Α	В	∢	В	4	В	A	=	=		=	n
	3	4	Q		_	I	I	٦	_	I	Ι.	_	_ :	Ξ.	С -	-	ı	I		_	I	I	7	٦	I	I	7	٦	I	I	٦	_ :	Ι:	Ι.	- ا	J I	Ξ	_	_	I	I	_	٦	I	ェ	٦	I	c –	1 _
	2	က	QB	_ =	=			I	=	-	- .	_	- -		ı	: =	=	=	_	=	=	=	=	=		=	-		I	=	-	= .	J :		-	I	=	-	=	٦		=			I	_	I	Г_	1 _
	1	7	В	/9 ¥	=			=	=	-				: =	=	=	=	=	=	=	=	=		=	"			н	=	=				: :	=	=	=	=	=	=	=	"		=		=		=	=
	Cases E, F	Cases <u>1/</u> 2	Test no.	52	54	55	26	22	58	29	09	61	62	63	65	99	29	89	69	202	71	72	73	74	75	92	77	78	79	80	81	82	83	84	82	87	88	88	06	91	92	93	94	92	96	97	86	100	101
	MIL-STD-	883 method		3014	=		n	"	2	-	= :		2 3	: -	=	-	=	-	=	-	=	=	27	"	n	n	,,	n	77	,,	n	3 3	:	: 3	: 3	"	"	3	"	"	,,	3	n			=		"	=
		Symbol		Func- tional	ests	<u>'</u>		_	_		_	_	_	_			_	_							_			_			_				_	_				_		_			_		_		
		Subgroup		7 F Fc = +25°C t)	471																																											

See footnotes at end of device types 07 and 08.

			Chit																	
		Limits		Max																
		Lir		Min																
			Measured	terminal							See <u>7</u> /									
		16	20	Vcc	4.5 V	=	=	н	=	=	=	=		=	=		н	=		
		15	19	۷	٧	Α	В	н	=		=	=		=	=		н			
		14	18	Clear	В			и	=		=	=		Α	=		н			
		13	17	Borrow	I			и	_	I	=	=			7	I	н			
	r open).	12	15	Ripple Carry	н	н		н					н				н	н		
tinued.	< 0.7 V; o	11	14	Load	/9 B	٧	٧	В	=	=	=	=	٧	=	=	=				
3 07 – Con	0 V; or low	10	13	O	Α	٧	В	и									н			
TABLE III. Group A inspection for device types 07 – Continued.	Terminal conditions (pins not designated may be high $\geq 2.0 \text{ V}$; or low $\leq 0.7 \text{ V}$; or open)	6	12	D	٧	٧	В	н	н				н				н	н		
ction for de	ted may be	8	10	GND	GND			u					u							
up A inspe	ot designa	7	6	g	I			7	=								н			
Gro	s (pins n	9	8	တိ	I			7	-	-										
TABLE	l condition	9	2	Count Up	٧	н		и			В	٧	u				В	Α		
	Termina	4	2	Count	٧			и	В	٧			u		В	٧	Α	Α		
		3	4	QA	I			7					ı				н			
		2		Q	I	=		7	=									=		
		1	2	В	/9 Y	٧	В	н	=	=	=	=	=	=	=		"		T _c = -55°C	
		Cases E, F	Cases <u>1</u> / 2	Test no.	102	103	104	105	106	107	108	109	110	111	112	113	114	115	Repeat subgroup 7 at $T_{\rm c}$ = +125 and $T_{\rm c}$ = -55°C.	
			883 method		3014			н	n	n	n		n	n	n	n	н		bgroup 7 at	
			Symbol		Func-	tional	tests	2/	_				_			_			Repeat su	
			ubgroup		7	c = +25°C tional													8	

See footnotes at end of device types 07 and 08.

		Onit																																																		
	so.		Мах																																																	_
	Limits		Min																																												_					
		nred																							See 7/																											
		Measured	terminal		_	T			_	_	П	_	1	1	_	1	1		1	1	1	_	_	_	Sec	1 1	1	1	<u> </u>		1	T	1			1	T	1	T	<u> </u>	ı	_	ı	I	П	П		П	\neg	<u>.</u>		
	16	20	Vcc	4.5 V		-	-		=	=	=	=				=	=		=			=	=	=			=		: :	-	=	=	=	-			=	=	=	=	=	=	=	=	=	=	=			: =	=	=
	15	19	∢	B	ם מ	< <	В	a <	۷ ۵	c M	В	Α	∢ (m (თ ⊲	<	а	В	∢	∢ (ω α	ם ס	< <	В	В	Α	4	а	n <	ζ=	=	=	=	=			=	=	=	=	=	=	=	=	=	=	=			. -	=	=
	14	18	Clear	В	: =				=	=						-	-		=			-	-	=		=	=			<	< ⊲	<u>.</u>	-	=	н			-	=	=	=	=	=		-						-	
	13	17	Borrow	T .						-		-					-		=				-			=					=	=	_	I				-	-		-	-	=		_	=	=		= 1		-	-
an).	12	2	Ripple Bo	, ,								_									_																l	l	l		L								1	+	+	
V; or ope	_			II.	-	-	_		_		-	-		_	-	-			-			_					-		+	_	-	-			-		-	-	Ī	_	Ī			-		-	-			_	_	H
ontinued. ow ≤ 0.7	7	14	Load	а.	α α	\ <	В	< 0	۵ ۵	α	A	В	∢ (m <	α α	Δ <	В	Α	В	۱ ک	m <	< α	Δ <	В	Α	В	∢	м.	∢ 0	<u>a</u>	2 4	=	-	=			=	=	=	=	=	=	=	=	-		=			-	-	=
TABLE III. Group A inspection for device types 08 — Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).	10	13	O	а:			=		=	<	=	=				=	В		=			=	=	⋖	=	=	=	- -	: =	=	=	=	=	-	н		=	=	-	=	-	=	=	=		=	=			: =	=	=
vice type high ≥ 2	6	12	۵	а:		-	-		=	=		=				-	٨		=			-	=	-			=		. -	=	=	=	-	-			=	=	-	=	-	=	=		-	-	=				-	=
on for de d may be	80	10	GND	GND					=	=						-	-		=			-	-	=		=	=			-	=	=	-	-				-	=	=	=	=			-	-			-		-	=
inspecti esignated	7	6	g						-	-						-	I						-	-		-	=			ļ	J =	=	-	I						-		-			-				_		-	-
Group A	9	8	တိ	1						H														н			_	_		l	J =	=		I						_		-				=		. :			_	-
ABLE III. ditions (p	_																																												H				7	+	+	+
T/ ninal cond	2	7	nt Count n Up	\vdash	-	-	-		-	-	-	-	- '		-	-	-		-			-	-	-		-	-		-	-	-	-	-	-			-	-	-	-	-	-	-	-			3		7	-	+	H
Tern	4	2	Count	Α:		-	-		=	=	-	-				=	-		=			-	-	=			=		: =	-	=	=	В	٧	В	∢ 0	> ۵	ς α	2 4	(M	٧	В	٨	В	A	В	A	Β.	4 (> מ	((ν Α
	က	4	ą		-	Ξ	_	_ =	c I	-	_	I	Ι.	_		Ξ Ξ	_	7	I	Ι.	_	1	Ξ	_	7	I	I	_		= -	J =	=	=	Ι	I	_ -	7 3	= I	-	יו	I	I	٦	٦	I	I	_	_	Ι:	Ι-	_	Ţ
	7	3	å	. د			I		=	_		=	= :	Ι.		=	_		=	= :	Ξ-	=	=	٦			=	Ξ.		-	_=	=	=	I	н		-	J =	=	=	I	=	=	=	٦		=	= :	Ι.		=	_
	-	2	В	/ <u>9</u> 8			Α		=	В		=		∢ :		=	В		=		∢ =	=	и	В		=	=	∢.		=	=	=	=	=	н		=	=	31	=	=	=	=		=						=	=
	щ	17/ is 1/	no.	21	× 1				0 0			0.1			0 "		_	6	_		21.6	ş -				~	•		+		, 1				8	0			~	L				_	6	0	1	2	3	4 4	2 2	
		Cases <u>1</u> / 2		52	5.0	56	56	57	20	9	61	62	9	30 6	90	67	39	39	7	71	7.7	7/	75	76	77	3/	32	ğ.	χō	ŏ	6 8 8	88	86	87	38	8	5 6	00	56	96	96	96	97	36	36	10	10	10	10	5 5	2 0	10
		MIL-STD- 883	method	3014			n	3 3	=	"	27	n	3 1		. -	=	=	=	=	-	: 3	"	"	"	n	29	3	=	: 3	"	"	3	"	n	n	3 3	37	"	33	"	=	=	=	=	=	,,	=		-	-	=	=
		Symbol		-5r	lar t	<u> </u>				1_	1					1	1					_1_	1	1			- 1			1_	1	1_	1	1			1		1_	1	1	1	1	1	Ц	_1						\dashv
				7 Func-	15°C 1101	2/	l																																													\dashv
		Subgroup		7	C = +2																																															

See footnotes at end of device types 07 and 08.

		Unit																																																			
	its		Мах																																																		
	Limits		Min																																																		
		Measured	terminal																								See 7/	-I																									
	16	20	Vcc	4.5 V				н		н	н	н					: =	=		=	=				=		=				=				=	= :		=			=		=	=	=		=	"		н	=		
•	15	19	∢	A		: :	=	н	н			н					: =				=				=	: =		=				=			=	= :		=	=		=	=					=	=			=		
•	14	18	Clear	B 8/	, ,		=		=						-		: =	=	=	=	=	-	-	=	=		=	=			=	-		-	-	=		=	-	-	-	=	A	=	=	-	-	В			=		
	13	17	Borrow	I		: :	=		=		=						: =	=	=	=	=	-	=	=	=		=	=	-	=	=	-			=	= :		=	-	=	=	=	=	=	=	_	I	=			=		
en).	12	15	Ripple Carry	Ξ			-				-	=			-		: =	=	=	=	=	-	=	=	=		=	=	-	=	=	=		=	=	= :		=	=	=		ı	=	-	=	=	=	=	=	7	I		
Terminal conditions (pins not designated may be $H \ge 2.0 V$; or $L \le 0.7 V$; or open).	11	14	Load	٧		: :	-		=	=	=	=	= =		=		: =	=	=	=	=	-	=	=		: =	=	=	-	=	=	-	=		=	=		=	-	=	=	=	=	=	=		=	=	В	=	=		-
V; or L ≤ (10	13	ပ	٧		: :	=								-		: =	-	=	=	=	-	-	=	=	: :	=	=	-	-	-	=		-	=	= :		=	-	-	=	=	=	=	=		=	-	=	=	=		
oe H≥2.0	6	12	٥	٧		: :	-	"	-								: =	-	-	-	-	-	-	=	=	: =	-	=	-	-	-	-		-	=	= :		-	-	-	=	=	=	=	-		-	-			=		
ated may t	8	10	GND	GND		: :	-		=			-					: :	=	-	=	=	-	=	=	=	: =	-	=	-	-	=			-	=	= :		=	-	-	=	=	=	=	-		-				=		-
ot designa	7	6	ď	_		: :	=										: =	=	=	=	=	-	-	=	=	: =	I	=	-	=	=				=	= :		=	-	=	=		l =	=	=		=		т				
ons (pins n	9	8	ő	ェ		:	=	"	-								: :	=	-	c =	=	-	=	=	=		-] =	=	=	=	=		=	I	= :		=	=	=	=		1 =	=	=		-	=	Н		=		
al conditio	2	7	Count	V	z :		-			=			В	∢ (n <	∢ (n <	۵ ک	< ۵	۵ ک	> ۵	τ α	2 <	ς α	> ۵	ν M	٨	B	Α	В	Α	В	٧	m	A	В	∢ (> ۵	ς α	> د	c a	A	΄ Α	B	ν 4	:=	=	=		В	∢	∢ <	∢
Termir	4	2	Count	B <u>6</u> /	∢ (я «	В	Α	В	٧	В	Α			-		: =	=	=	=	=		=	=	=		=	=			=			-		= :		=			=	=	=	=	=	В	۷ ا				=	В <	۷
	3	4	ď	I		J	I	٦	٦	I	I		_ :	Γ:	Г-	١.		c 3	c -	_ ا	ם ר	c 1	-	J _	J]	I I	-	, -	I	I	_	٦	I	I	_	_	Ι:	С -		J =	: 1	:	l =	=	=		=	=	I		=		
Î	2	3	Q	٦		· I	=			7	=	=			=	Γ:	: =	=	-	_ =	=	=	ı	=	=	: =	_] =	=	=	I	=		=	_	=		3	=	=		_	I =	=	=	=	=	=	Ι	=	=		
	1	2	В	/9 A			=		=	=	=	=			=		:	=	=	=	=	=	=	=	33		=	=	=	=	=	-		=	=	=		=	=	=	=	"	=	=	=		=	=		=	=		
•	Cases E, F	Cases <u>1</u> / 2	Test no.	108	109	110	112	113	114	115	116	117	118	61.	120	121	122	124	124	125	127	128	120	130	124	131	133	134	135	136	137	138	139	140	141	142	143	144	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
•	_	MIL-STD- (3014	= :	: =	n	"	"		"	"	3 3			:	: =	=	=	=	=		3	"	33	. 3	"	,	я	"	,	"	19	,,	,,	3 :	: 3	39	,	"	2	,	"	-		=	=		39		=	= =	1460
		Symbol		Func-	tional	tests 5/	i															_1_			-1	1				1			. 1			1					-				1					1	1		
-		Subgroup		7	rc = +25°C t	4/	•																																														

See footnotes at end of device types 07 and 08.

MHz MHz Unit us. Max Limits Ξ 22 22 Load to Q_A

Load to Q_B

Load to Q_C

Load to Q_D

Load to Q_D

Load to Q_D

Count up to Q_D

Count up to Q_D

Count up to Q_D

Count down to Q_D Count down to QA Count up to QA terminal 5.0 V Vcc 20 GND 15 19 ⋖ GND GND GND Clear GND 14 18 Borrow r open). 13 TABLE III. Group A inspection for device types 0.7 and 0.8 —Continued. Terminal conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or 4 5 6 7 8 9 10 11 12Ripple carry 5.0 V 5.0 V Load 14 GND 13 ပ 5.0 V 12 Ω GND 10 OUT DOUT 100 TU0 OUT OUT g OUT ő Count 5.0 V z Count 5.0 V z OUT OUT OUT OUT OUT ď OUT OUT OUT 100 g В 162 190 (Device type) 161 Cases E, F Case 1/ 145 116 117 MIL-STD-883 method 3003 9/ Symbol F MA × 80 t_{PLH9} 9 Tc = +25°C Subgroup

See footnotes at end of device types 07 and 08.

		U		MH	ΨĤ	ns	=	=	=		•	: :		=	=	**	=	=	=	=	=	=		"	"	"	**	"	"	"	"	"	33	
	its		Мах			63	"	n	=	"	: 3	: :	: ;	09	,,	"	33	"	11	"	"	73	31	11	,,	"	"	33	"	99	"	,,	"	
	Limits		Mi	22	22	3	-	n	=		: 3	: :		=	=	-		=	=	=	-	n	33	n	n	"	n	39	"	"	n	»	"	
		Measured	terminal	Count up to Q_A	Count down to $Q_{\mathbb{A}}$	Load to Q _A	Load to Q _B	Load to $Q_{ m c}$	Load to $Q_{\rm D}$	Load to QA	Load to U _B	Load to Q _C	Load to Q _D	Count up to QA	Count up to Q _B	Count up to $Q_{\mathbb{C}}$	Count up to Q _D	Count down to Q _D	Count down to $Q_{\rm C}$	Count down to Q _B	Count down to QA	Count up to Q_A	Count up to Q _B	Count up to $Q_{\mathbb{C}}$	Count up to $Q_{\rm D}$	Count down to Q _D	Count down to Q _C	Count down to Q _B	Count down to QA	Clear to Q _A	Clear to Q _B	Clear to Q _c	Clear to Q _D	
	16	20	Vcc			•						•																						
	15	19	∢																															
	14	18	Clear																															
pen).	13	17	Borrow																															
TABLE III. Group A inspection for device types 07 and 08 – Continued. Terminal conditions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open).	12	15	Ripple carry																															
08 – Cor or low ≤ (11	14	Load																															
s 07 and ≥ 2.0 V;	10	13	О																															
evice type	6	12	D																															
TABLE III. Group A inspection for device types 07 and 08 – Continued. all conditions (pins not designated may be high ≥ 2.0 V; or low ≤ 0.7 V; or	8	10	GND																															
A inspector	7	6	Q																															ci
III. Group ions (pins	9	8	တိ													p 9.																		°= -55°(
TABLE	2	7	Count													subgrou																		xcept T _o
Termir	4	5	Count													Same terminal conditions as for subgroup 9.																		oup 10, except $T_{\rm C}$ = -55°C.
	3	4	Q													al conditi																		r subgro
	2	3	QB													me termir																		its as fo
	-	2	В													Sa																		Same tests, terminal conditions, and limits as for subgro
	Cases E, F	Case <u>1</u> / 2	(Device type)	191	192	193	194	Н	196	-	+	+	-	-	-		-	205			208	209	210	-	212	213	Н	215	216	217	218	219	220	onditions
			(D)	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	minal co
	MIL-STD-			3003 9/	-	-	=	n	35	= 3	: 3	: :	:	33	3	33	n	77	n	n	11	n	-	=	=	=	n	"	n	"	n	"	,,	ests, ter
		Symbol		Р _{МАХ} 19/	F _{MAX} 8/	фгн8				оглна				фгн								t _{PHL11}								t _{PHL12}				Same t
		Subgroup		9 Tc = +25°C																														11

See footnotes at end of device types 07 and 08.

1/ Case 2, pins not referenced are N/C.

 $\underline{2}/$ Apply 0.7 V for device type 07; apply 2.0 V for device type 08.

3/ IL limits (µA) min/max values for circuits shown:

Parameter	Terminals				Circuits			
		А	В	Э	D	Е	F	9
		-160/-400	-160/-400	-160/-400	-100/-340	-100/-340	-120/-360	-135/-370
671	A	3	я	я	я	я	з	n
	В	я	я	n	я	я	з	n
	S	n	n	n	n	n	3	n
	Q	n	"	"	n	n	77	n
I _{IL10}	Load	-100/-340	n	-150/-380	-120/-360	-120/-360	n	-100/-340
	Clear	-160/-400	n	-150/-380	n	n	n	-135/-370
1111	Count up	n	n	"	n	n	"	n
	Count down	n	n	n	n	n	n	n

4/ los limits (mA) min/max values for circuits shown: -15/-100 for circuits A, C, D, E, F, and G and -15/-110 for circuit B.

5/ Only a summary of attributes data is required.

A = 3.0 V minimum; B = 0.0 V or GND. 9

 $\overline{Z}/$ H > 1.5 V; L < 1.5 V; X = don't care.

8/ F_{NAX} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

9/ See figure 8 for device type 07 and figure 9 for device type 08.

10/ Apply momentary GND, then 4.5 V minimum prior to input pulses. Maintain 4.5 V minimum for measurement.

TABLE III. Group A inspection for device types 09 and 13 – Continued. Terminal conditions (pins not designated may be $H \ge 2.0$ V; or L ≤ 0.7 V; or open).

	Unit		>	=	=	н		=	=	=	=			=	"	=	31	n	и	n	п	=	Α'n	"	"	3 3	: 3	: "	"	"	3	"	"	"	77	"	×	×
its		Max	9.0		-	"	"	"							-1.5 V	=	n	"	"	11	11	31	<u>%</u> ا	"	"	: :	: 3	: 3	"	09	300	20	,,	11	11	"	,,	3
Limits		Min							2.5 V	,,	"	"	"	n									%	"	"	,	: 3	: 3	"									
	Measured	terminal	Q	ď	တိ	Q	Max/Min	arry		ď	Q _c	QD	Max/Min	Ripple carry	В	Enable G	Down/up	D	C	Load	Clock	4	Enable G	В	Down/up	٥	. د	Clock	A	Enable G	Enable G	В	Down/up	D	C	Load	Clock	¥
16	20	V _{CC}	4.5 V	"		н	"				н				=	=	=	"	"	и	n	×	5.5 V	"	n	3 3	: 3	: 3	"	3	3	"	"	33	**	n	y,	31
15	19	∢		0.7 V				2.0 V		2.0 V			0.7 V									-18 mA							0.4 V									2.7 V
14	18	Clock						0.7 V													-18 mA							0.4.V									2.7 V	
13	17	Ripple carry						4 mA						-0.4 mA																								
12	15	Max/ Min					4 mA						-0.4 mA																									
11 12	14	Load	0.7 V	,,	,,	"	,,,	"	,,	,,	"	31	11	n						-18 mA				GND		3 3	: 0	V 4.0	GND			5.5 V		5.5 V	5.5 V	2.7 V		5.5 V
10	13	O			0.7 V			2/			2.0 V		0.7 V						-18 mA								0.4 V								2.7 V			
6	12	٥				0.7 V		2.0 V				2.0 V	0.7 V					-18 mA								0.4 V								2.7 V				
8	10	GND	GND	-	=				=	=		-	-	=	=	=	=	n	n	n	n	×	*	"	"	= :	. "	: 3	"	3	3	"	"	"	"	"	y	33
7	თ	ô				4 mA						-0.4 mA																										
5 6 7 8 9 10	8	ď			4 mA						-0.4 mA																											
5	7	Down/ up					2.0 V	0.7 V					2.0 V				-18 mA						5.5 V		0.4 V								2.7 V					
4	2	Enable G						0.7 V						2.0 V		-18 mA							0.4 V							2.7 V	5.5 V							
3	4	ď		4 mA						-0.4 mA																												
2	е	Q	4 mA						-0.4 mA																													
-	2	В	0.7 V				2.0 V	2/	2.0 V				0.7 V		-18 mA									0.4 V								2.7 V						
Cases E, F	Cases <u>1</u> / 2	Test no.	1	2	3	4	9	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	52	97	28	29	30	31	32	33	34	35	36	37
	MIL-STD- 883	method	3007			н	"	n	3006		11	11	**	3	1	1							3009	"	"	,,	: 3	"	n	3010	3	n	п	11	11	,,	n	35
	Symbol		Vol	<u> </u>					V _{ОН}						Vic								11.7	11.8			1		1	IH15	IH16	IH17					1	
	ubgroup		-	= +25°C																																		

See footnotes at end of device types 09 and 13.

							_	'ABLE III.	Group A ir	spection f	or device to	pes 09 and	TABLE III. Group A inspection for device types 09 and 13 – Continued.	nued.								
							Termi	ial conditi	ns (pins n	ot designa	ted may be	$H \ge 2.0 \text{ V}$;	erminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$; or L $\le 0.7 \text{ V}$; or open)	/; or open).								
		MIL-STD-	Cases E, F	1	2	3	4	2	9	7	8	9 1	10 11	12	13	14	15	16		Limits	its	
Subgroup	Symbol	883 method	Cases <u>1/</u> 2	7	က	4	2	7	ω	6	. 10	12 1	13 14	15	17	18	19	20	Measured			Onit
			Test no.	В	g	Q	Enable G	Down/ Up	ő	o o	GND	0	C Load	d Max/	/ Ripple Carry	Clock	٧	Vcc	terminal	Min	Max	
1	l _{IH18}	3010	38	5.5 V						9	GND		5.5 V	^				2.5 V	В		100	Αų
c = +25°C			39					5.5 V			_							=	Down/up		=	,,
			40								. 5.	5.5 V	5.5 V	^				=	٥		-	-
			41								_	5.5 V	_ ^ 2					=	ပ		-	-
		,	42								_		3						Load		"	
		33	43								_					5.5 V		=	Clock		"	-
		39	44								,,		5.5 V	^			5.5 V	"	∢		"	"
	los	3011	45	5.5 V	GND						,,		GND	0				"	g	/4	/4	mA
		*	46			GND					,,		3				5.5 V	"	ď	"	"	,,
		"	47						GND		,,	5.5 V	, ^ ?					,,	တိ	"	"	39
		"	48							GND	. 5.	5.5 V	37					,,	ගී	"	"	39
		"	49	GND				5.5 V			9	GND GND	, Q	GND	_		GND	"	Max/Min	"	n	"
		n	20				5.5 V				,,				GND			,,	Ripple carry	"	"	,,
	lcc	3002	51	GND			GND	GND			<u>.</u>	GND	GND GND	0		GND	GND		Vcc		35	
2	Same te	sts, termina	Same tests, terminal conditions, and limits as for subgroup 1, except T_c = +125°C and V_c tests are omitted	s, and limit	s as for s	ubgroup	1, except	T _c = +1	25°C and	V _{IC} tests	are omit	ed.										
3	Same te	sts, termina	Same tests, terminal conditions, and limits as for subgroup 1, except T_c = -55°C and V_C tests are omitted	s, and limit	s as for s	ubgroup	1, except	T _C = -55	°C and ∿	c tests a	re omitte	76										

See footnotes at end of device types 09 and 13.

		Chit																																														
	ts		Мах																																													_
	Limits		Z Z																																													
		Measured	terminal																								See <u>7</u> /																					
	16	20	V _{CC}	4.5 V	-	- -			=	=	=	-				-		=	=	=	=	=	=			-	=	=	=		=	=	=			=	=	=	=	=	=	=	-	=			-	=
	15	19	A	4		= 0	n =	_	4	=	=	В		= .	∢ ,	∢ (9 0	n <	τ α	2 a	ם מ	(a	1 <	В	В	A	٧	В	⋖		В) =		٧	B ⊲	(=	=	В	A	В	Α	В			_	Α α	a cc	<
	14	18	Clock	V		= (n <	4 4	В	1 <	В	4	В	4 (я.	∢ (я «	۷ ۵	٥ <	כ מ	ם מ	(a	1 4	В	٧	В	٧	В	⋖	B <	(42	1 <	В	٧	B 4	В	⋖	В	V		=	В	٧	٧	В	Vα	0 4	<u></u>
	13		Ripple C Carry	I						ı	-				<u> </u>					-	_	_	_				_		_		_					_	_	7	I			_			_	T =	_	_
																																										_	_				-	_
or open).	12	15	Max/Min	I			-	-	-	_	=	=						-	=	=	=	=	=		-		=	=			=	=	=			=	I	I	7	I			-			<u>ا</u> ا	-	=
TABLE III. <u>Group A inspection for device types 09</u> – Continued. Terminal conditions (pins not designated may be $H \ge 2.0$ V; or $L \le 0.7$ V; or open).	11	14	Load	В	m ·	∢ :	: =	=	=	=	=	=		= :	. -			=	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=		=	=	=	=	=	=	=	=	=	= :		=	=
es 09 – C 2.0 V; or L	10	13	O	4	-	= 0	n =	=	٨	=	=	-		а .	∢ .	∢ (a =	-	<	ς α	Δ	=	=	В	В	A	=	=	В	a <	< ∢	В	В	A	В	а	A	В	A	В	Α	В	٧	В	В	< α	a a	A
evice typ	6	12	۵	Α:	-	= 0	a =	=	A	=	=	=		а.	∢ :			۵	> ۵	<=	=	α	a a	Α	Α	В	=	=	∢		=	=	В	Α	B ⊲	(m	4	В	A	В	¥	В	В	A		= a	۵ ۵	A
<u>stion for d</u> nated may	8	10	GND	GND	-			-			=									=	=		=				=	=	-					н		=	=	=				=					-	=
A inspector	7	6	ď	I					-	_	=	=			.			=	=	=	=	=			н		=	=			=	=					-	=	7		=	=		-	= ;	Ι:		=
III. <u>Group</u> ins (pins i	9	80	ď	I				=	-	7	=	=						c =	=	=	=	=	=		7		=	=			=	I				-	-	=	7	=		=			= :	Ι:		=
TABLE	2	7	Down/ up	В	= :		: -		-	=	=								=	=	=	=	-				=	=			=	=				=	=	=		A	=	=	=	=	-		-	3
Termina	4		Enable G	_	_		. -	ď	ı =	-	-	-							-	-	-	-		-	-	-	-	-	-		-	-				-	-	-	-	=	A	=	=	В	= :		-	=
	3	4	Q	I		: :	: -	=	-	7	7	I	I		_ :	E :	Ξ-		7 3	1	-		ı	н	7	٦	I	I	7		_ 	-	7	H	I -		I	I	7	=	-	-		-	= :	I I	_ 	
	2	3	a	I						7				Ι.				-		=	I	=					=	=	I		=	7			- 1	: =		=	7			=			= ;	I -	-	=
				/ <u>9</u> A										1																												_	_		1	1	<u> </u>	H
	F 1	2		Α:		= 0	20 0	ממ	2	=	=	-		В	∢ :			-	=	=	-	=	=	В	В	A	=	=	В		=	=	=	A	B ⊲	(M	A	В	A	В	A	В	A	В	Α.	Α α	3 00	A
	Cases E,	Cases <u>1</u> / 2	Ę	25	53	24	22	200	28	29	09	61	62	63	64	60	99	/9	00	60 02	71	72	73	74	75	92	77	78	79	80	82	83	84	82	86	88	88	06	91	92	93	94	92	96	26	86	100	101
		MIL-STD- 883	method	3014	-	= =	: 3	"	"	=	,,	39	n	3 :			: =	-	=	=	-	-	n	27	n	"	3	"	,	: :	y	33	3	n	3 3	"	,,	,,	"	3	7	3	=	=	= :		y	=
		Symbol		Func-	tional	tests	ſΩ																																									
		Subgroup		7	Tc = +25°C																																											

See footnotes at end of device types 09 and 13.

Unit Max Limits Ξ Measured terminal See 7/ Vcc 16 15 ⋖ B A B B Clock 14 В Ripple Carry H 13 Max/Min 12 TABLE III. Group A inspection for device types 09 — Continued. I conditions (pins not designated may be $H \ge 2.0$ V; or $L \le 0.7$ V; or LLoad O Ω GND ď g I Down/ up A Terminal Enable G B <u>6</u>/ ď I å Ι-Repeat subgroup 7 at $T_{\rm C}$ = +125 and $T_{\rm C}$ = -55°C. Cases E, F
Cases1/
2 Test no. 102 104 105 106 107 108 MIL-STD-883 method Symbol Func-tional tests <u>5</u>/ Tc = +25°C Subgroup ω

See footnotes at end of device types 09 and 13.

		Unit																																																	
	its		Max																																																
	Limits		ΜË																																																
		Measured	terminal																								/2 000	/ <u> </u>																							
	16	20	V _{CC}	4.5 V				=		=				н		н		=	=	-	=	=	-					=	=			=	=		н	= :			. =		-	=							=	=	
	15	19	Α	Α	, ,	: "	: =	=	"	=	В	В	٧		11	В	11	"	"	9	"	Α	В	Α.	∢ (n =	,,	<	τ <	∢ 0	0 60	٧	Α	В	31	,,	۷ ۽	=	. "	"		n =			: •	۷ı	ω (n <	∢ =	=	
	14	18	Clock	В	В	∢ «	α α	ס כ	(4	•	В	A	В	Α	В	Α	В	٧	В	Α	В	V	В	Κ.	B «	α α	> 4	۵ ک	< م	۵ ک	0 4	В	٧	В	Α	В	∢ 0	Δ <	∢ 0	< م	∢ (n <	τ (n •	∢ (В.	∢ (m <	α α	A	
	13	17	Ripple carry	Т			-	1 =	= 3	n	=						-	=	=	-	=	=	-			-	-	c =	=	=		=	=			: ب	=	⊏ ≈	: 3	3	-	=							=	=	
oen).	12	15	Max/Min	I				_] =	"	=	=						=	=		=	=	-		= =	I I	-		=	=		=	=		I	Ι.		_ "	: 3	,,,		=							=	=	
TABLE III. Group A inspection for device types 13 — Continued. conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open).	11	14	Load	B <u>6</u> /	∀ :	: 3		=	=	=								=	=		=	=	-		- -		-	=	=	=		=	=						: =			=							=	=	
13 – Coni V; or L≤	10	13	O	В				=	٨	: =	=	В	A	В	В	Α	A	В	A	Ф	В	A	В	Α.	∢ (n =	=	<	۵ ک	> ۵	۷ ۷	а	В	Α	Α	В	. "	35	: <	ξ:	-	=	٥	ם מ	ω.	¥:			=	-	
vice types be H≥ 2.0	6	12	О	Α		: 3		=	"	=	=	В	٧	"	п			В	y,		=	A	Ф	∢ .	∢ (n =	=	<	τ <	< □	0 00	۷	=	n	"	В	: "	"	: <	ζ:	-	=	۵	n -			= <	∢ =	-	=	
ion for de	8	10	GND	GND				-	=	=			=		-			=	=		=	=	-				=	=	=	=		=	=				: -	-	: =	-		=							=	=	
A inspect of design:	7	6	ď	I				-	J =	"	-	=		-	=			=	=	-	=	=	-	I.	= 3		-	J =	=	=		-	=		-	- :	E =	-	: =		_ =	-	-				- -		=	=	
II. Group ns (pins n	9	8	တိ	٦				-	-	,,	-	=				I		n	=	-	-	=	-		= 3	: =	=	-	=	=	-	-	,,					-	: =	-	с -	-					- -	-	١=	=	
TABLE III. Terminal conditions	2	7	Down/ up	В	: :			=	=	=	=	=	=	=	-	=		=	=	=	=	=	=				=	=	=	<	ζ =	=	=		=			-	: =	-	-	=					.		-	"	
Termin	4	2	Enable G	√9 V	: :	: (n =	"	=	=	=	=						=	=	=	=	=	=				=	=	=	<	ζ =	=	=	В				-		-	=	=	=						-	=	
	3	4	ď	I	, ,	: "	: =	-	J _	ı	I	7	٦	I	I	7	٦	I	I	_	_	I	I	7	_ :	I I	-		- ا	E =	31	"	"	,,	٦	٦:	_	c -		J		E -	١.	٠.	Ε:	Ι.	_ -	_ =	I I	:	
	2	3	å	7				=	=	"	=	I		11		7		31	=	I	=	"	=		= 3		=	=	,,	=		=	"			= :	: =	-			E =	=		1	_ :				r =	=	
	1	2	В	B <u>6</u> /		: 3	: 3	"	٨	< A	<u>а</u>	В	A	В	77		Α	В	4	-	-		В	∢ .	∢ (m m	۵ ۵	> ۵	τ 0	Δ <	ζ «	<u>а</u>	=	=	11	з .	4 "	35	: 3	"	: 39	: =			: (а (m ·	∢ =	=	=	
	Cases E, F	Cases <u>1</u> /	Test no.	52	53	54	55	22	228	59	09	61	62	63	64	65	99	29	89	69	20	71	72	73	74	76	2 1	//	0 / 0	60	81	82	83	84	85	86	/8/	8 8	£ 0	90	1.6	35	33	94	32	96	97	80	100	101	
		MIL-STD- 883	method	3014			. "	3	"	=	"	y,	n	77				=			=			: :	= =	: "	,,	"	33	3	n	"	31	n	77	3 3	. "	39	: 3	39	: 3	. 4	,						,,	=	
		Symbol		Func-	tional	tests	ان اث	1	1_	1_		1																1				1	1	I				1		1	1									_	
		Subgroup			Tc = +25°C 1																																														

See footnotes at end of device types 09 and 13.

Unit Max Min Measured See 7/ terminal 16 15 Clock 18 Ripple Carry 13 1 open). Load
 TABLE III. Group A inspection for device types 13 – Continued.

 conditions (pins not designated may be H≥ 2.0 V; or L≤ 0.7 V; or 5

 5
 6
 7
 8
 9
 10
 11

 7
 8
 9
 10
 12
 14
 14
 O Ω GND g ő Down/ up Terminal 4 5 Enable G B <u>6</u>/ ď å I Repeat subgroup 7 at $T_{\rm C}$ = +125 and $T_{\rm C}$ = -55°C. В Cases E, F
Cases1/
2 Test no.
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 1111
 <td 102 103 108 108 108 MIL-STD-883 method 3014 Symbol Func-tional tests 5/ Tc = +25°C Subgroup ω

See footnotes at end of device types 09 and 13.

	S			MH	ns	=	=	=	=		=	"	=	-	33	=	=	=	=	=	=	=
nits		Max			38	"	"		22	"	"	"	59	"	"	"	41	"	"	"	47	22
Lin		Ε		18	3		"			"	"	"			н					и	n	"
	Measured terminal			Ck to QA	Load to QA	Load to Q _B	Load to Q _c	Load to Q _D	Load to QA	Load to Q _B	Load to $Q_{\rm C}$	Load to Q _D	Ck to Q _A	Ck to Q _B	Ck to $Q_{\rm c}$	Ck to Q _D	Ck to QA	Ck to Q _B	Ck to Q _c	Ck to Q _D	Ck to Max/Min	Ck to Max/Min
16	20	V _{oc}		5.0 V					=			,,	=					=		н	n	"
15	19	А			5.0 V				GND													
14	18	Clock		z	GND	,,	,,	"	"	27	11	"	Z	,,	27	"	,,	,,	"	,,	n	77
13	17	Ripple	carry																			
12	15	Max/Min																			OUT	OUT
11	14	Load		5.0 V	Z	"	"	"	"	"	"	,,	5.0 V	"	"	"	"	"	"	,,,	n	,,
10	13	С					5.0 V				GND											
6	12	D						5.0 V				GND										
8	10	GND		GND	=					и	11		-		и					н	n	,,
7	6	g						OUT				OUT				OUT				OUT		
9	8	ಿರ					LNO				TUO				TUO				TUO			
2	7	Down/	d h	GND									GND	,,	,,	"	,,	"	"	,,,	n	,
4	2	Enable	פ	GND									GND	"	"	"	"	"	"	39	"	"
3	4	Q		TUO	OUT				OUT				OUT				TUO					
2	8	ВO				TUO				TUO				TUO				TUO				
1	2	В				5.0 V				GND												
es F	1/	rice e)	13	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168
		(Dev dyt	60	152	153	154	155	156	157	158	159	160	161	162	163		165	166	191	168	169	170
MIL-STD-	883 method			3003 9/	=	=	"	n		11	19	n	n	"	11	n	"	"	n	"	n	=
	Symbol			F _{MAX}	t _{PLH10}				t _{PHL13}				t _{PLH11}				t _{PHL14}				t _{РLН12}	t _{PHL15}
	Subgroup			9 Tc = +25°C																		
	MIL-STD- E, F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 2 3 4 5 7 8 9 10 11 12 13 14 15 16	Symbol Rask body Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 16 17 18 19 20 Measured terminal terminal 1 10 12 13 14 15 17 18 19 20 Measured terminal terminal terminal Min Min Max/min Ripple Clock A V _{CC} A Corr Corr Load Max/min Ripple Clock A V _{CC} Min Max	Symbol Method Z		Cases 1			Mil-STD Cases 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 Imits Imits	Mil-STD Cases 1	Mil-STD Cases 1		Mil-STD Cases 1		Mark Store Case 1	Mile State Case 1	Milk State Cases 1		Milking Fig. Fig.	Milk-STO- Ease 1	MIL-STO Case 1	

See footnotes at end of device types 09 and 13.

Max 99 80 Limits Ξ 18 Count up to Q_B Ck to Max/Min Load to Qa Coad to Qa Measured terminal Ck to QA Load to Q_A Vcc 16 20 ⋖ 19 15 Clock 14 18 Ripple carry 13 TABLE III. Group A inspection for device types 09 and 13 – Continued. Terminal conditions (pins not designated may be H \geq 2.0 V; or L \leq 0.7 V; or open) Max/Min 12 15 Load 14 10 13 ပ 12 Δ GND 10 g Same tests, terminal conditions, and limits as for subgroup 10, except T_{C} = -55°C. ď Same terminal conditions as for subgroup 9. Down/ up Enable G ď ď В (Device type) 171 169 186 187 Cases E, F Case <u>1</u>/ 1774 1774 1776 1777 1778 1779 180 181 183 184 185 186 187 188 189 MIL-STD-883 method 3003 9/ Symbol t_{PUH11} t_{PUH12} F_{MAX} 10 Tc = +125°C Subgroup

Unit

MHz

See footnotes at end of device types 09 and 13.

Case 2, pins not referenced are N/C. 7 2/ Apply 2.0 for device type 09; apply 0.7 V for device type 13.

 I_{IL} limits (µA) min/max values for circuits shown: <u>്</u>

Parameter Terminals	Terminals				Circuits			
		Α	В	0	D	Е	Ь	9
I _{IL7}	Enable G	Enable G -360/-1080		-160/-400 -360/-1080 -360/-1080 -360/-1080 -360/-1080	-360/-1080	-360/-1080	-360/-1080	-360/-1080
I _{IL8}	A, B, C, D	-130/-400 -160/-400 -160/-400 -160/-400 -120/-360 -120/-360 -120/-360	-160/-400	-160/-400	-160/-400	-120/-360	-120/-360	-120/-360
	dn/uwoQ	n	n	-150/-380	n	n	39	я
	Clock	n	n	и	n	n	n	¥
	Load	-100/-340	n	n	-100/-340	"	n	n

los limits (mA) min/max values for circuits shown: -15/-100 for circuits A, C, D, E, F, and G and -15/-110 for circuit B. 41

Only a summary of attributes data is required. 2

A = 3.0 V minimum; B = 0.0 V or GND. <u>/9</u>

H > 1.5 V; L < 1.5 V; X = don't care. / F_{wxx} minimum limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency. 8

See figure 10 for device type 09 and figure 12 for device type 13. 6

"

Υ'n 100 100 Max 80 400 80 400 15 Limits Min 13/ Measured terminal 8 တ္ခံထို ш රේ ඊ ඊ ඊ ඊ රී රී ඊ ඊ රී ⋖ 4 ⋖ ш В -18 mA 5.5 V 2.0 V GND 0.4 V 2.7 V 2/ 3/ GND 2/ 3/ GND 14 20 ⋖ 2 13 19 -0.4 mA GND 4 mA +I_{II3} 12 18 ά -0.4 mA GND 4 mA å 16 TABLE III. Group A inspection for device types 10. I conditions (pins not designated may be $H \ge 2.0$ V; or L ≤ 0.7 V; or open). GND GND 10 14 -0.4 mA GND Same tests, terminal conditions, and limits as for subgroup 1, except T_c = +125°C and V_{IC} tests are omitted. 13 ď Same tests, terminal conditions, and limits as for subgroup 1, except $T_C = -55$ °C and V_{IC} tests are omitted. 4 mA GND අ R_o(2) GND GND GND 5.5 V 5.5 V 10 2 R_o(1) 2.7 V GND 5.5 V GND 5.5 V 7 Vcc 2 Terminal 2 2 GND 2/ 3/ 2/ 4/ 5/ 5/ -18 mA GND 2/ 3/ 2/ 4/ 0.4 V 5.5 V 2.7 V GND GND 2.0 V В Cases
A, B, C, D
Cases1/ Test no. 16 15 18 20 7 22 23 24 25 26 27 28 29 MIL-STD-883 method 3009 3010 3002 3007 Symbol Voн <u>≅</u> <u>£</u> 8 Tc = +25°C Subgroup 7 က

"W

See footnotes at end of device type 10.

Unit

Unit MHz ns " Max 53 37 50 74 81 52 56 Limits Μin 29 58 terminal See 10/ A to QA 12/ IN 12/ 14 20 ⋖ z 2 13 19 OUT 12 OUT 18 σ́ 16 g TABLE III. Group A inspection for device type 10– Continued. additions (pins not designated may be high \geq 2.0 V; or low \leq 0.7 V; or open). GND GND GND 10 14 OUT OUT OUT DUT 13 g TUO TUO 12 අ Same tests, terminal conditions, and limits as for subgroup 7, except $T_c = +125^{\circ}C$ and -55 $^{\circ}C$. $R_o(2)$ 10 R_o(1) GND 11/ GND GND GND GND 11/ GND 11/ GND Same tests, terminal conditions, and limits as for subgroup 10, except T_{C} = -55°C. 5.0 V ر ا 2 2 S ZΖ ш Cases E A, B, C, D Cases<u>1</u>/ Test no. 99 69 70 71 72 73 74 MIL-STD-883 method (Fig 11) 3003 Symbol Func-Tional tests <u>8</u>/ MAX MAX 10 Tc = +125°C 9 Tc = +25°C , Tc = +25°C Subgroup 7 ω

See footnotes at end of device type 10.

Case 2, pins not referenced are N/C. 7

Apply 4.5 volts pulse, then ground prior to taking measurements to set device in the desired state. Maintain ground for measurement. 7

Input pulse must be applied one time after R_{O} pulse. 8

Input pulse must be applied twice after Ro pulse.

4 2/

Input pulse must be applied four times after Ro pulse.

I_{IL} limits (mA) min/max values for circuits shown: /9

Darameter	Terminals				Circuits			
		۷	В	O	D	Е	Ь	O
ILI	R _o (1) R _o (2)	12/36	03/40	03/40	03/40		12/36	
11.2	٧	-0.5/-2.0	-1.0/-2.4	-1.0/-2.4	-1.0/-2.4		-0.5/-2.0	
l _{L3}	В	-0.7/-3.2	-0.7/-3.2	-0.7/-3.2	-0.4/-1.6		-0.7/-3.2	

los limits (mA) min/max values for circuits shown: /_

	Measured				Circuits			
Parameter	terminals	۷	В	O	Q	В	ь	ŋ
los	$Q_A,Q_B,$	-15/-100	-15/-100	-30/-130	-15/-100		-15/-100	

8/ Only a summary of attributes data is required.

9/ A = 3.0 V minimum; B = 0.0 V or GND.

10/ H > 1.5 V; L < 1.5 V; X = don't care.

 $\overline{11}^{/}$ Momentary $3.0\,\mathrm{V}$ (min), then ground. Maintain ground for measurement.

 $\overline{12}/$ F_{MAX} min limit specified is the frequency of the input pulse. The output frequency shall be one-half of the input frequency.

 $\overline{13}/$ The minimum limit for circuit F shall be $-150~\mu\text{A}.$

5. PACKAGING

5.1 <u>Packaging requirements</u>. For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When actual packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature which may be helpful, but is not mandatory.)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirements for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to contracting activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003 of MIL-STD-883), corrective action, and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for special carriers, lead lengths, or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - I Requirements for "JAN" marking.
 - j. Packaging Requirements (see 5.1)
- 6.3 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.
- 6.4 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.

6.5 <u>Abbreviations, symbols, and definitions</u>. The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535, MIL-HDBK-1331, and as follows:

GND	Ground zero voltage potential
l _{IN}	Current flowing into an input terminal
V _{IC}	Input clamp voltage
V _{IN}	Voltage level at an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.4) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer length leads and lead forming should not affect the part number.
- 6.7 <u>Substitutability.</u> The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-38510 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Military device	Generic-industry type
	-
01	54LS90
02	54LS93
03	54LS160
04	54LS161
05	54LS168
06	54LS169
07	54LS192
08	54LS193
09	54LS191
10	54LS92
11	54LS162
12	54LS163
13	54LS190

6.8 <u>Manufacturers' designation.</u> Manufacturers' circuits which form a part of this specification are designated with an "X" as shown in table IV herein.

TABLE IV. Manufacturers' designation.

Device	Circuit	А	В	G	С	E	F	D
type	Manufacturer	Texas	Signetics	National	Raytheon	Fairchild	Motorola,	Advanced
	Commercial Type	Instruments, Incorporated	Corp.	Semi- Conductor Corp.	Company	Semi- conductor	Inc.	Micro Devices Inc.
01	54LS90	Х	X		Х	Х	X	
02	54LS93	Х	Х	Х	Х	Х	Х	
03	54LS160A	Х	Х	Х	Х	Х	Х	Х
04	54LS161A	Х	Х	Х	Х	Х	Х	Х
05	54LS168			Х		Х		
06	54LS169A			Х		Х		
07	54LS192	Х	Х	Х	Х	Х	Х	Х
08	54LS193	Х	Х	Х	Х	Х	Х	Х
09	54LS191	Х	Х	Х	Х	Х	Х	Х
10	54LS92	Х		Х	Х		Х	
11	54LS162A	Х	Х	Х	Х	Х	Х	Х
12	54LS163A	X	Х	Х	X	X	Х	Х
13	54LS190	Х	Х	Х	Х	X	Х	Х

^{6.9 &}lt;u>Change from previous issue.</u> Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC

Preparing activity: DLA - CC

Review activities:

Army – SM, MI Navy - AS, CG, MC, SH TD Air Force – 03, 19, 99

(Project 5962-1996)