

D, DBQ, DGV, OR PW PACKAGE

(TOP VIEW)

16 Vcc

15 🛛 EN

14 S1_D

13 S2D

12 🛛 D_D

11 S1_C

10 S2_C

9 🛛 D_C

V_CC

16

9

2

15 EN

14

13 S2n

12 D_D

11 S1_C

10 S2_C

 $S1_D$

INI

2

3

8

z

1

GND

RGY PACKAGE

(TOP VIEW)

S1_A

S2_A

D_A [] 4

S1_B 🛛 5

S2_B 🛛 6

D_B [] 7

GND [

S1_A

S2_A

 D_A

S1_B 5

S2_B6

D_B

2

3

4

SCDS162C-MAY 2004-REVISED JULY 2005

FEATURES

- Low Differential Gain and Phase (D_G = 0.82%, D_P = 0.1 Degree Typ)
- Wide Bandwidth (BW = 300 MHz Min)
- Low Crosstalk (X_{TALK} = -80 dB Typ)
- Low Power Consumption (I_{CC} = 10 μA Max)
- Bidirectional Data Flow With Near-Zero
 Propagation Delay
- Low ON-State Resistance (r_{on} = 3 Ω Typ)
- Rail-to-Rail Switching on Data I/O Ports (0 to V_{CC})
- V_{cc} Operating Range From 3 V to 3.6 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Data and Control Inputs Provide Undershoot Clamp Diode
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
 - 2000-V Human-Body Model (A114-B, Class II)
 - 1000-V Charged-Device Model (C101)
- Suitable for Both RGB and Composite-Video Switching

DESCRIPTION/ORDERING INFORMATION

The TS3V330 video switch is a 4-bit 1-of-2 multiplexer/demultiplexer, with a single switch-enable (\overline{EN}) input. When \overline{EN} is low, the switch is enabled and the D port is connected to the S port. When \overline{EN} is high, the switch is disabled and the high-impedance state exists between the D and S ports. The select (IN) input controls the data path of the multiplexer/demultiplexer.

Low differential gain and phase make this switch ideal for composite and RGB video applications. This device has wide bandwidth and low crosstalk, making it suitable for high-frequency applications as well.

T _A	PACKA	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
	QFN – RGY	Tape and reel	TS3V330RGYR	TF330	
	SOIC – D	Tube	TS3V330D	TC2)/220	
	50IC - D	Tape and reel	TS3V330DR	- TS3V330	
–40°C to 85°C	SSOP (QSOP) – DBQ	Tape and reel	TS3V330DBQR	TF330	
	TOCOD DW	Tube	TS3V330PW	TEDDO	
	TSSOP – PW	Tape and reel	TS3V330PWR	- TF330	
	TVSOP – DGV	Tape and reel	TS3V330DGVR	TF330	

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCDS162C-MAY 2004-REVISED JULY 2005

DESCRIPTION/ORDERING INFORMATION

This device is fully specified for partial-power-down applications using I_{off} . The I_{off} feature ensures that damaging current will not backflow through the device when it is powered down. This switch maintains isolation during power off.

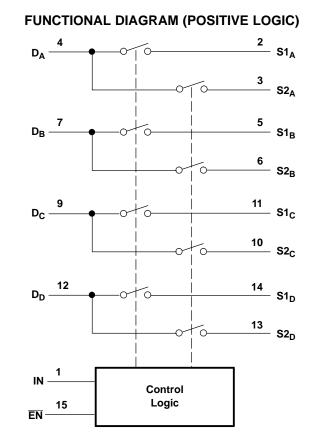
To ensure the high-impedance state during power up or power down, \overline{EN} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INPUTS		INPUT/OUTPUT	FUNCTION		
EN	IN	D	FUNCTION		
L	L	S1	D port = S1 port		
L	н	S2	D port = S2 port		
н	Х	Z	Disconnect		

PIN DESCRIPTION

NAME	DESCRIPTION
S1, S2	Analog video I/Os
D	Analog video I/Os
IN	Select input
EN	Switch-enable input


SCDS162C-MAY 2004-REVISED JULY 2005

PARAMETER DEFINITIONS

PARAMETER	DESCRIPTION
R _{on}	Resistance between the D and S ports, with the switch in the ON state
I _{OZ}	Output leakage current measured at the D and S ports, with the switch in the OFF state
I _{OS}	Short-circuit current measured at the I/O pins
V _{IN}	Voltage at IN
V _{EN}	Voltage at EN
C _{IN}	Capacitance at the control (EN, IN) inputs
C _{OFF}	Capacitance at the analog I/O port when the switch is OFF
C _{ON}	Capacitance at the analog I/O port when the switch is ON
V _{IH}	Minimum input voltage for logic high for the control (EN, IN) inputs
V _{IL}	Minimum input voltage for logic low for the control (EN, IN) inputs
V _H	Hysteresis voltage at the control (EN, IN) inputs
V _{IK}	I/O and control (EN, IN) inputs diode clamp voltage
VI	Voltage applied to the D or S pins when D or S is the switch input
Vo	Voltage applied to the D or S pins when D or S is the switch output
I _{IH}	Input high leakage current of the control (EN, IN) inputs
Ι _{ΙL}	Input low leakage current of the control (EN, IN) inputs
l _l	Current into the D or S pins when D or S is the switch input
Ι _Ο	Current into the D or S pins when D or S is the switch output
l _{off}	Output leakage current measured at the D or S ports, with $V_{CC} = 0$
t _{ON}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF
BW	Frequency response of the switch in the ON state measured at -3 dB
X _{TALK}	Unwanted signal coupled from channel to channel. Measured in $-dB$. $X_{TALK} = 20 \log V_O/V_I$. This is a nonadjacent crosstalk.
O _{IRR}	Off isolation is the resistance (measured in –dB) between the input and output with the switch OFF.
D _G	Magnitude variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
D _P	Phase variation between analog input and output pins when the switch is ON and the dc offset of composite-video signal varies at the analog input pin. In the NTSC standard, the frequency of the video signal is 3.58 MHz, and dc offset is from 0 to 0.714 V.
I _{CC}	Static power-supply current
I _{CCD}	Variation of I _{CC} for a change in frequency in the control (EN, IN) inputs
ΔI_{CC}	This is the increase in supply current for each control input that is at the specified voltage level, rather than V _{CC} or GND.

SCDS162C-MAY 2004-REVISED JULY 2005

SCDS162C-MAY 2004-REVISED JULY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	Supply voltage range			
V _{IN}	Control input voltage range ⁽²⁾⁽³⁾		-0.5	4.6	V
V _{I/O}	Switch I/O voltage range ⁽²⁾⁽³⁾⁽⁴⁾		-0.5	4.6	V
I _{IK}	Control input clamp current	V _{IN} < 0		-50	mA
I _{I/OK}	I/O port clamp current	V _{I/O} < 0		-50	mA
I _{I/O}	ON-state switch current ⁽⁵⁾			±128	mA
	Continuous current through V_{CC} or GND			±100	mA
		D package ⁽⁶⁾		73	
		DBQ package ⁽⁶⁾		90	
θ_{JA}	Package thermal impedance	DGV package		120	C/W
		PW package ⁽⁶⁾		108	
		RGY package ⁽⁷⁾		39	
T _{stg}	Storage temperature range	· · · ·	-65	150	С

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- All voltages are with respect to ground, unless otherwise specified. (2)
- The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3)

(4)

 V_I and V_O are used to denote specific conditions for $V_{I/O}$. I_I and I_O are used to denote specific conditions for $I_{I/O}$. (5)

The package thermal impedance is calculated in accordance with JESD 51-7. (6)

The package thermal impedance is calculated in accordance with JESD 51-5. (7)

Recommended Operating Conditions⁽¹⁾

		MIN	MAX	UNIT
V _{CC}	Supply voltage	3	3.6	V
V _{IH}	High-level control input voltage (EN, IN)	2	V_{CC}	V
V _{IL}	Low-level control input voltage (EN, IN)	0	0.8	V
V _{ANALOG}	Analog I/O voltage	0	V_{CC}	V
T _A	Operating free-air temperature	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, (1) Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCDS162C-MAY 2004-REVISED JULY 2005

Electrical Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PAF	RAMETER		TEST CONDITIONS ⁽¹⁾					UNIT	
V _{IK}	EN, IN	V _{CC} = 3 V,	I _{IN} = -18 mA				-1.8	V	
V _{hys}	EN, IN					150		mV	
I _{IH}	EN, IN	V _{CC} = 3.6 V,	V_{IN} and $V_{EN} = V_{CC}$				±1	μA	
IIL	EN, IN	V _{CC} = 3.6 V,	V_{IN} and $V_{EN} = GND$				±1	μA	
$I_{OZ}^{(3)}$		V _{CC} = 3.6 V,	$V_0 = 0$ to 3.6 V,	$V_{I} = 0,$	Switch OFF		±1	μA	
$I_{OS}^{(4)}$		V _{CC} = 3.6 V,	$V_{O} = 0.5 V_{CC,}$	$V_{I} = 0,$	Switch ON	50		mA	
I _{off}		$V_{CC} = 0 V,$	$V_0 = 0$ to 3.6 V,	$V_I = 0$			15	μA	
I _{CC}		V _{CC} = 3.6 V,	$I_{I/O} = 0,$	Switch ON or 0	OFF		10	μA	
ΔI_{CC}	EN, IN	V _{CC} = 3.6 V,	One input at 3.4 V,	Other inputs at	t V _{CC} or GND		750	μA	
		V _{CC} = 3.6 V,	$V_{EN} = GND$	D D and S ports open,			0.45	mA/	
ICCD		VIN input switching 8		0.45	MHz				
CIN	EN, IN	V_{IN} of $V_{EN} = 0$,	f = 1 MHz			3.5		pF	
<u> </u>	D port	V O	£ 1 MIL-	0.4.4.055	10		~ C		
C _{OFF} S port		$V_1 = 0,$ f = 1 MHz,		Outputs open, Switch OFF		5		pF	
C _{ON}		V ₁ = 0,	f = 1 MHz,	Outputs open,	Switch ON	17		pF	
		V _I = 1		I _O = 13 mA,	R_L = 75 Ω	5	7	0	
r _{on} ⁽⁵⁾		$V_{CC} = 3 V$	V _I = 2 V,	I _O = 26 mA,	R_L = 75 Ω	7	10	Ω	

(1) V_I, V_O, I_I, and I_O refer to I/O pins. (2) All typical values are at V_{CC} = 5 V (unless otherwise noted), T_A = 25°C.

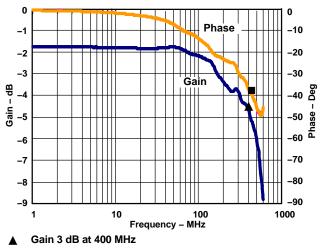
(3) For I/O ports, I_{OZ} includes the input leakage current.
(4) The I_{OS} test is applicable to only one ON channel at a time. The duration of this test is less than one second.
(5) Measured by the voltage drop between the D and S terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (D or S) terminals.

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V, R_L = 75 Ω , C_L = 20 pF (unless otherwise noted) (see Figure 5)

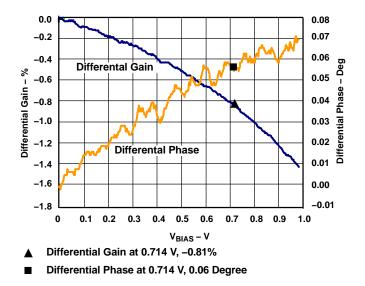
PARAMETER	FROM (INPUT)	TO (OUTPUT)	ΜΙΝ ΤΥ	P MAX	UNIT
t _{ON}	S	D	2	.5 6.5	ns
t _{OFF}	S	D	1	.1 3.5	ns

Dynamic Characteristics


over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TYP ⁽¹⁾	UNIT		
D _G ⁽²⁾	$R_L = 150 \Omega$,	f = 3.58 MHz,	See Figure 6	0.82	%
D _P ⁽²⁾	R _L = 150 Ω,	f = 3.58 MHz,	See Figure 6	0.1	Deg
BW	$R_L = 150 \Omega$,	See Figure 7		300	MHz
X _{TALK}	$R_L = 150 \Omega$,	f = 10 MHz,	RIN = 10 Ω , See Figure 8	-80	dB
O _{IRR}	$R_L = 150 \Omega$,	f = 10 MHz,	See Figure 9	-50	dB

(1) All typical values are at $V_{CC} = 5 V$ (unless otherwise noted), $T_A = 25^{\circ}C$. (2) D_G and D_P are expressed in absolute magnitude.


SCDS162C-MAY 2004-REVISED JULY 2005

TYPICAL CHARACTERISTICS

■ Phase at 3-dB Frequency, –38.28 Degrees

Figure 1. Gain/Phase vs Frequency

SCDS162C-MAY 2004-REVISED JULY 2005

■ Phase at 10 MHz, 87.8 Degrees

Figure 3. Off Isolation vs Frequency

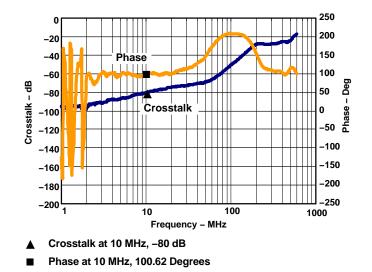
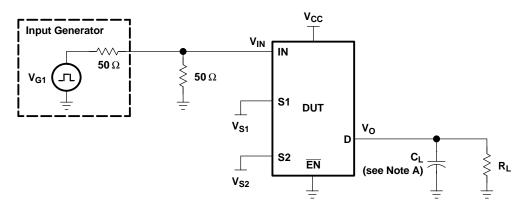
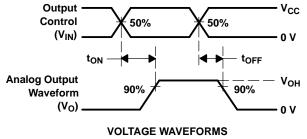



Figure 4. Crosstalk vs Frequency


SCDS162C-MAY 2004-REVISED JULY 2005

PARAMETER MEASUREMENT INFORMATION

TEST	V _{CC}	RL	CL	V _{S1}	V _{S2}
t _{ON}	3.3 V \pm 0.3 V 3.3 V \pm 0.3 V	75 75	20 20	GND V _{CC}	V _{CC} GND
t _{OFF}	3.3 V \pm 0.3 V 3.3 V \pm 0.3 V	75 75	20 20	GND V _{CC}	V _{CC} GND

TEST CIRCUIT

ton AND toFF TIMES

NOTES: A. C_L includes probe and jig capacitance.

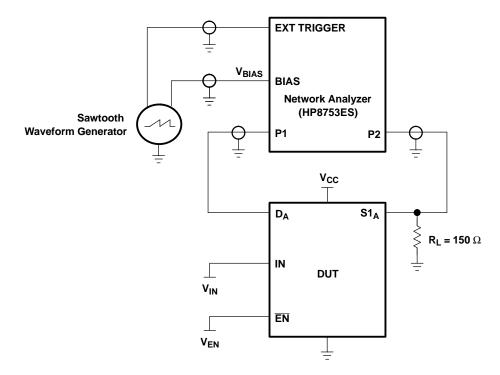

- B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- C. The outputs are measured one at a time, with one transition per measurement.

Figure 5. Test Circuit and Voltage Waveforms

TEXAS INSTRUMENTS www.ti.com

SCDS162C-MAY 2004-REVISED JULY 2005

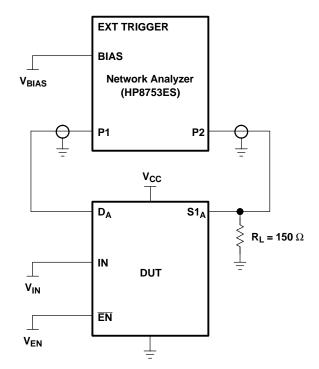
PARAMETER MEASUREMENT INFORMATION

NOTE: For additional information on measurement method, refer to the TI application report, *Measuring Differential Gain and Phase*, literature number SLOA040.

Figure 6. Test Circuit for Differential Gain/Phase Measurement

Differential gain and phase are measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A.

HP8753ES Setup


Average = 20 RBW = 300 Hz ST = 1.381 s P1 = -7 dBM CW frequency = 3.58 MHz

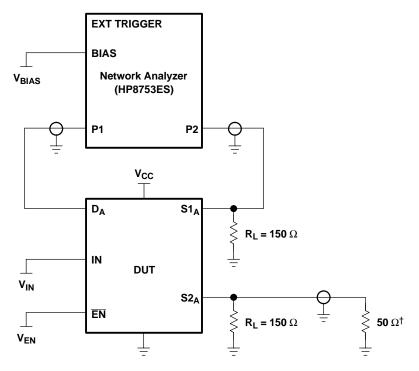
Sawtooth Waveform Generator Setup

 $V_{BIAS} = 0$ to 1 V Frequency = 0.905 Hz

SCDS162C-MAY 2004-REVISED JULY 2005

PARAMETER MEASUREMENT INFORMATION

Frequency response is measured at the output of the ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog I/O ports are left open.


HP8753ES Setup

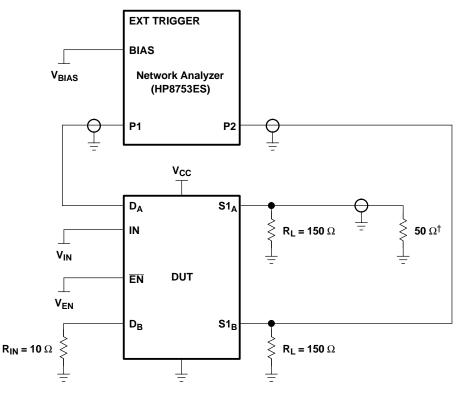
 $\begin{array}{l} \text{Average} = 4 \\ \text{RBW} = 3 \text{ kHz} \\ \text{V}_{\text{BIAS}} = 0.35 \text{ V} \\ \text{ST} = 2 \text{ s} \\ \text{P1} = 0 \text{ dBM} \end{array}$

SCDS162C-MAY 2004-REVISED JULY 2005

PARAMETER MEASUREMENT INFORMATION

 † A 50- $\!\Omega$ termination resistor is needed for the Network Analyzer.

Figure 8. Test Circuit for Crosstalk (X_{TALK})


Crosstalk is measured at the output of the nonadjacent ON channel. For example, when $V_{IN} = 0$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_B. All unused analog input (D) ports and output (S) ports are connected to GND through 10- Ω and 50- Ω pulldown resistors, respectively.

HP8753ES Setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

SCDS162C-MAY 2004-REVISED JULY 2005

PARAMETER MEASUREMENT INFORMATION

[†] A 50- Ω termination resistor is needed for the network analyzer.

Figure 9. Test Circuit for Off Isolation (OIRR)

Off isolation is measured at the output of the OFF channel. For example, when $V_{IN} = V_{CC}$, $V_{EN} = 0$, and D_A is the input, the output is measured at S1_A. All unused analog input (D) ports are left open, and output (S) ports are connected to GND through 50- Ω pulldown resistors.

HP8753ES Setup

Average = 4 RBW = 3 kHz V_{BIAS} = 0.35 V ST = 2 s P1 = 0 dBM

5-Feb-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TS3V330D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330DBQR	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3V330DBQRE4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3V330DBQRG4	ACTIVE	SSOP/ QSOP	DBQ	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3V330DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330DGVR	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330DGVRE4	ACTIVE	TVSOP	DGV	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330PWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330PWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TS3V330RGYR	ACTIVE	QFN	RGY	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR
TS3V330RGYRG4	ACTIVE	QFN	RGY	16	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. **TBD:** The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

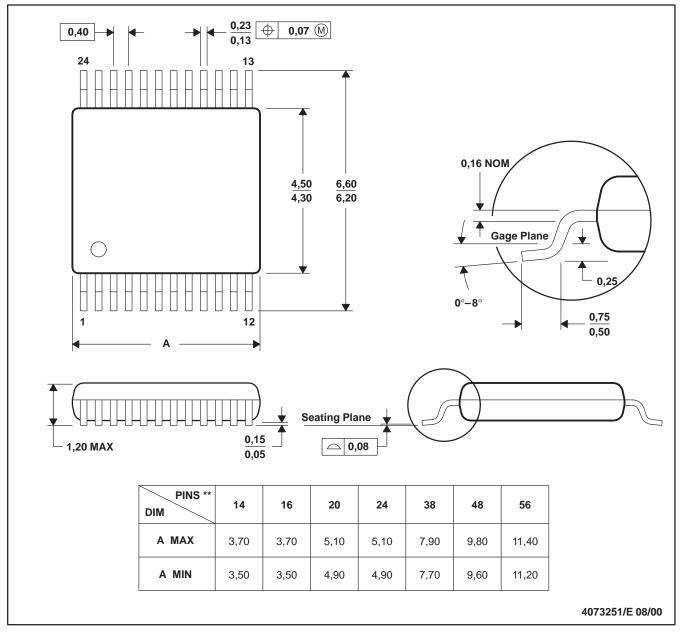
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


MECHANICAL DATA

PLASTIC SMALL-OUTLINE

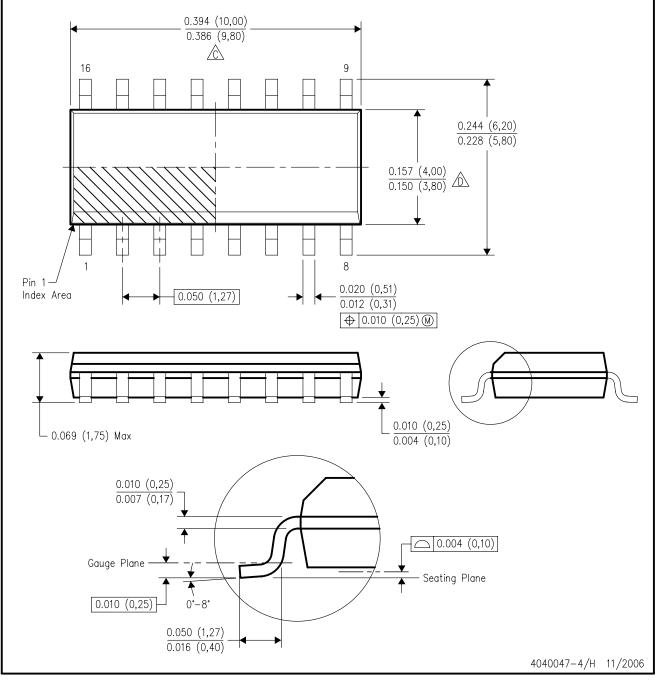
MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

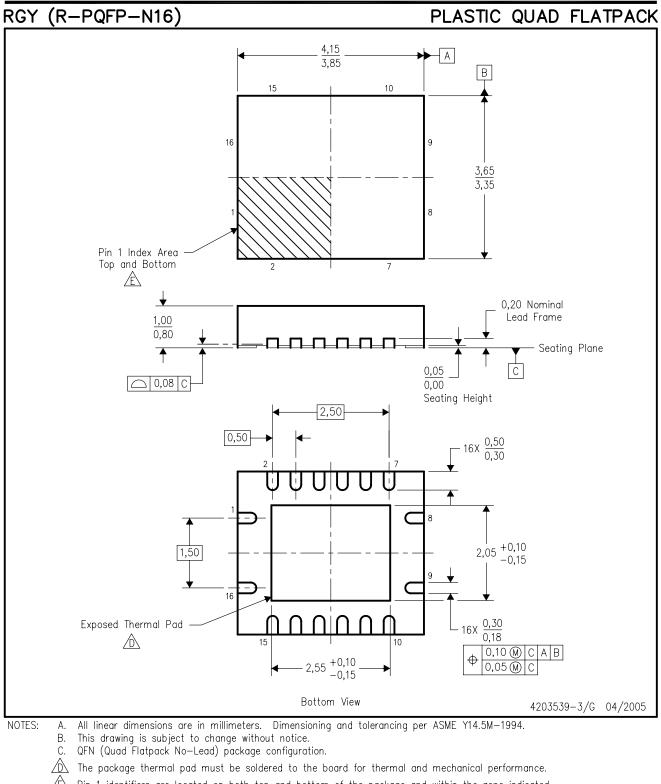
14/16/20/56 Pins – MO-194

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

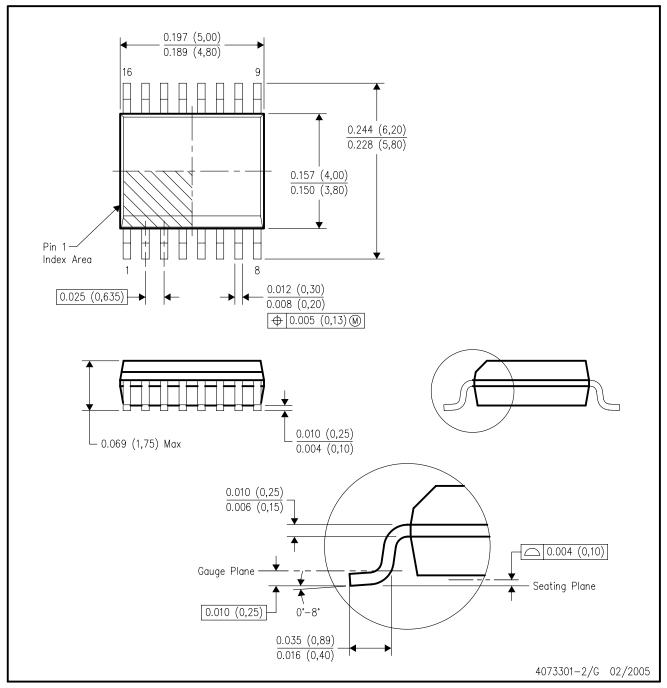
B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.

Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.

E. Reference JEDEC MS-012 variation AC.

MECHANICAL DATA


Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.

F. Package complies to JEDEC MO-241 variation BB.

DBQ (R-PDSO-G16)

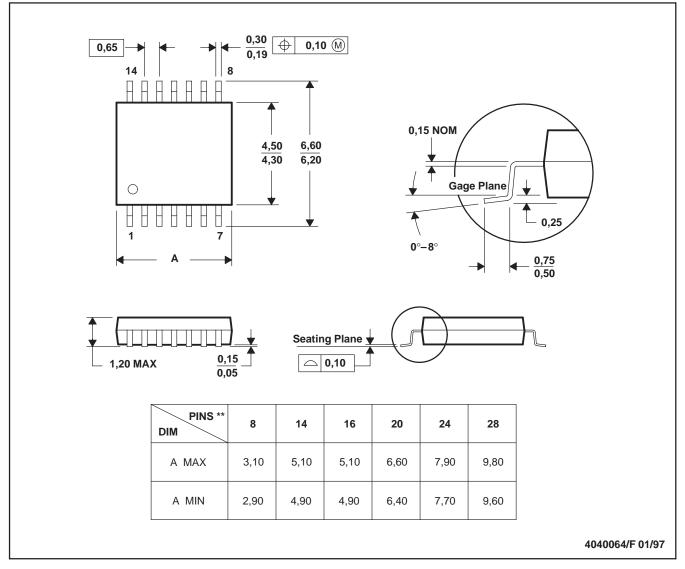
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AB.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2007, Texas Instruments Incorporated