

IR Receiver Modules for Remote Control Systems

DESIGN SUPPORT TOOLS

click logo to get started

MECHANICAL DATA

Pinning:

1, 4 = GND, $2 = V_S$, 3 = OUT

FEATURES

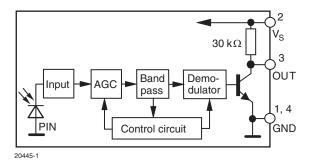
- Very low supply current
- · Photo detector and preamplifier in one package
- · Internal filter for PCM frequency
- Supply voltage: 2.5 V to 5.5 V
- · Improved immunity against ambient light
- · Two lenses for high sensitivity
- Insensitive to supply voltage ripple and noise
- Ultra low 2.6 mm profile
- · Winged for mounting within PCB cutout
- · Compatible with reflow soldering
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

HALOGEN FREE

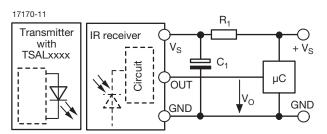
GREEN (5-2008)

DESCRIPTION

The TSOP39...TR1 series are miniaturized receiver modules for infrared remote control systems. Two PIN diodes and a preamplifier are assembled on a leadframe, the epoxy package contains an IR filter. The demodulated output signal can be directly connected to digital circuitry for decoding.


The TSOP393..TR1 series devices are optimized to suppress almost all spurious pulses from energy saving lamps like CFLs. These AGC3 devices may also suppress some data signals if continuously transmitted.

The TSOP395..TR1 series contains a very robust AGC5. This series should only be used for critically noisy environments.


These components have not been qualified according to automotive specifications.

PARTS T	ABLE				
AGC		NOISY ENVIRONMENTS AND SHORT BURSTS (AGC3)	VERY NOISY ENVIRONMENTS AND SHORT BURSTS (AGC5)		
	30 kHz	TSOP39330TR1	TSOP39530TR1		
Carrier frequency	33 kHz	TSOP39333TR1	TSOP39533TR1		
	36 kHz	TSOP39336TR1 (1)	TSOP39536TR1 TSOP39538TR1		
	38 kHz	TSOP39338TR1 (2)(3)(4)(5)			
	40 kHz	TSOP39340TR1	TSOP39540TR1		
	56 kHz	TSOP39356TR1	TSOP39556TR1		
Package		TVCas	etSMD		
Pinning		1, 4 = GND, 2 = V _S , 3 = OUT			
Dimensions (mm)		6.8 W x 2.6 H x 5.3 D			
Mounting		SMD			
Application		Remote control			
Best choice for		(1) MCIR (2) Mitsubishi (3) RECS-80 Code (4) r-map (5) XMP-1, XMP-2			

BLOCK DIAGRAM

APPLICATION CIRCUIT

 R_1 and C_1 recommended to reduce supply ripple for $V_S < 2.8 \text{ V}$

ABSOLUTE MAXIMUM	MUM RATINGS			
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT
Supply voltage		V _S	-0.3 to +6	V
Supply current		Is	3	mA
Output voltage		Vo	-0.3 to (V _S + 0.3)	V
Output current		Io	5	mA
Junction temperature		Tj	100	°C
Storage temperature range		T _{stg}	-25 to +85	°C
Operating temperature range		T _{amb}	-25 to +85	°C
Power consumption	T _{amb} ≤ 85 °C	P _{tot}	10	mW

Note

• Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability

ELECTRICAL AND	OPTICAL CHARACTERISTICS (T _{amb} = 25	(T _{amb} = 25 °C, unless otherwise specified)				
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage		Vs	2.5	-	5.5	V
Cumply ourrant	$E_V = 0, V_S = 3.3 V$	I _{SD}	0.27	0.35	0.45	mA
Supply current	E _v = 40 klx, sunlight	I _{SH}	-	0.45	-	mA
Transmission distance	E_{v} = 0, test signal see Fig. 1, IR diode TSAL6200, I_{F} = 50 mA	d	=	30	-	m
Output voltage low	$I_{OSL} = 0.5 \text{ mA}, E_e = 0.7 \text{ mW/m}^2$, test signal see Fig. 1	V _{OSL}	-	=	100	mV
Minimum irradiance	Pulse width tolerance: t_{pi} - 5/ f_o < t_{po} < t_{pi} + 6/ f_o , test signal see Fig. 1	E _{e min.}	-	0.08	0.12	mW/m ²
Maximum irradiance	t_{pi} - $5/f_0 < t_{po} < t_{pi} + 6/f_0$, test signal see Fig. 1	E _{e max.}	30	-	-	W/m ²
Directivity	Angle of half transmission distance	Ψ1/2	=	± 50	-	0

TYPICAL CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

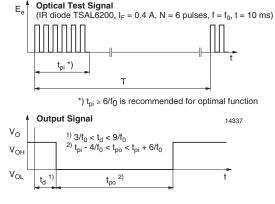


Fig. 1 - Output Active Low

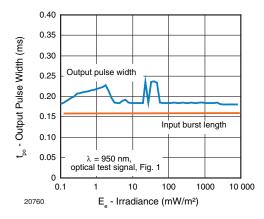


Fig. 2 - Pulse Length and Sensitivity in Dark Ambient

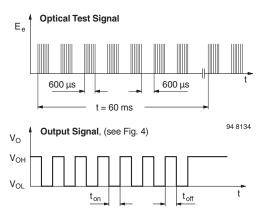


Fig. 3 - Output Function

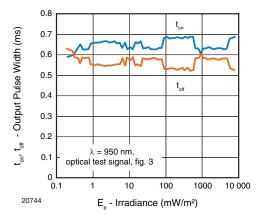


Fig. 4 - Output Pulse Diagram

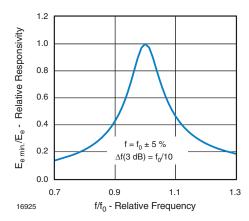


Fig. 5 - Frequency Dependence of Responsivity

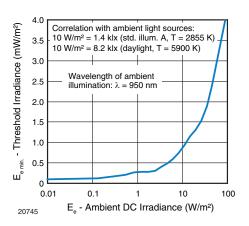


Fig. 6 - Sensitivity in Bright Ambient

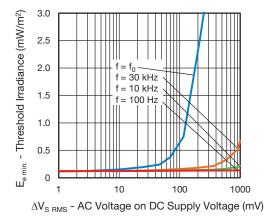


Fig. 7 - Sensitivity vs. Supply Voltage Disturbances

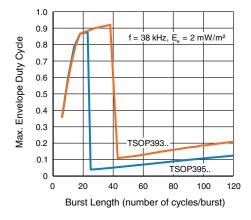


Fig. 8 - Max. Envelope Duty Cycle vs. Burst Length

www.vishay.com

Vishay Semiconductors

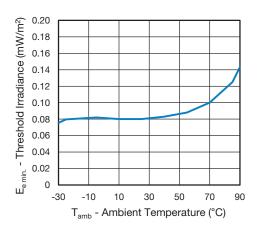


Fig. 9 - Sensitivity vs. Ambient Temperature

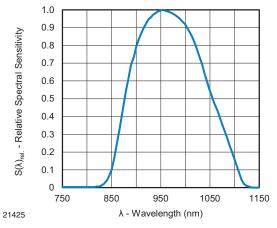


Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

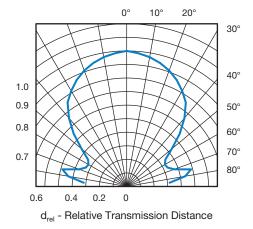


Fig. 11 - Horizontal Directivity

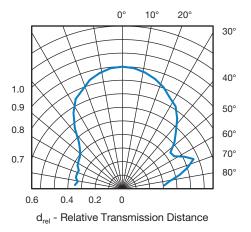


Fig. 12 - Vertical Directivity

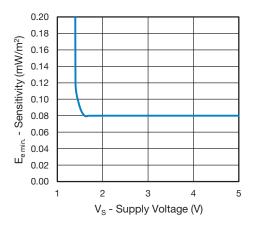


Fig. 13 - Sensitivity vs. Supply Voltage

SUITABLE DATA FORMAT

This series is designed to suppress spurious output pulses due to noise or disturbance signals. The devices can distinguish data signals from noise due to differences in frequency, burst length, and envelope duty cycle. The data signal should be close to the device's band-pass center frequency (e.g. 38 kHz) and fulfill the conditions in the table below

When a data signal is applied to the product in the presence of a disturbance, the sensitivity of the receiver is automatically reduced by the AGC to insure that no spurious pulses are present at the receiver's output.

Some examples which are suppressed are:

- DC light (e.g. from tungsten bulbs sunlight)
- Continuous signals at any frequency
- Strongly or weakly modulated pattern from fluorescent lamps with electronic ballasts (see Fig. 14 or Fig. 15)

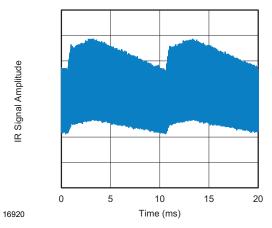
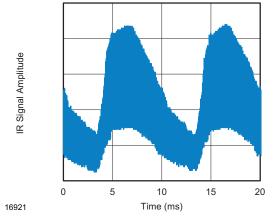
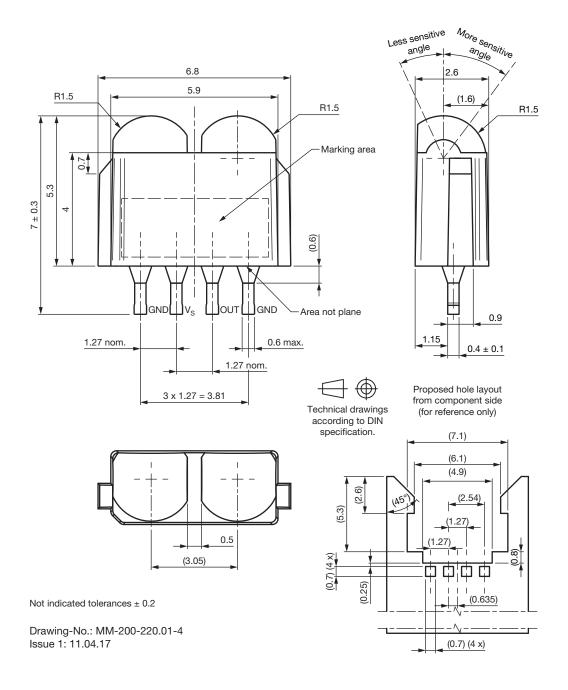
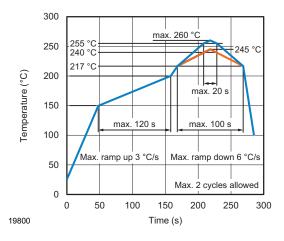


Fig. 14 - IR Disturbance from Fluorescent Lamp With Low Modulation

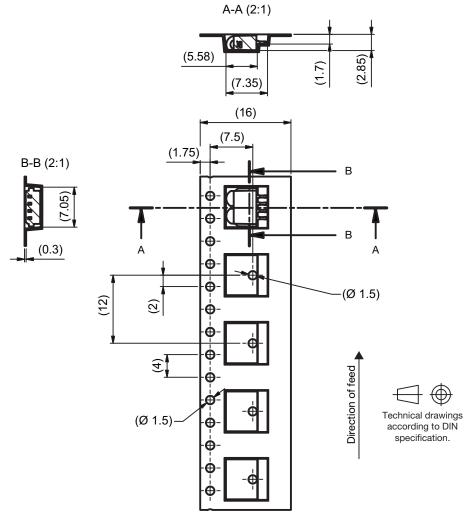



Fig. 15 - IR Disturbance from Fluorescent Lamp With High Modulation

	TSOP393TR1	TSOP395TR1
Minimum burst length	6 cycles/burst	6 cycles/burst
After each burst of length a minimum gap time is required of	6 to 35 cycles ≥ 10 cycles	6 to 24 cycles ≥ 10 cycles
For bursts greater than	35 cycles	24 cycles
a minimum gap time in the data stream is needed of	> 4 x burst length	> 25 ms
Maximum number of continuous short bursts/second	2000	2000
MCIR code	Preferred	Yes
XMP-1, XMP-2 code	Preferred	Yes
Suppression of interference from fluorescent lamps	Mild and complex disturbance patterns are suppressed (example: signal patterns of Fig. 14 and Fig. 15)	Critical disturbance patterns are suppressed, e.g. highly dimmed LCDs

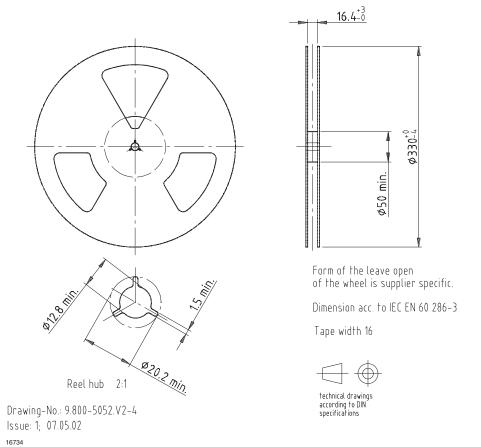

Note

• For data formats with long bursts please see the datasheet for TSOP392..TR1, TSOP394..TR1

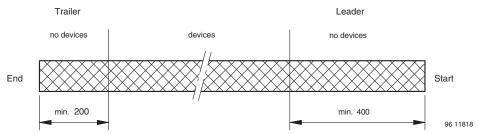

PACKAGE DIMENSIONS in millimeters

VISHAY LEAD (Pb)-FREE REFLOW SOLDER PROFILE

TAPING VERSION TSOP..TR1 DIMENSIONS in millimeters



Drawing-No.: MM-200-229.01-4_Z


Issue A: 24.04.17

REEL DIMENSIONS in millimeters

Packing quantity - 2000 pieces per reel

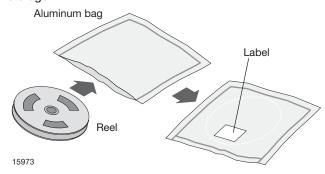
LEADER AND TRAILER DIMENSIONS in millimeters

COVER TAPE PEEL STRENGTH

According to DIN EN 60286-3 0.1 N to 1.3 N 300 ± 10 mm/min. 165° to 180° peel angle

LABEL

Standard bar code labels for finished goods


The standard bar code labels are product labels and used for identification of goods. The finished goods are packed in final packing area. The standard packing units are labeled with standard bar code labels before transported as finished goods to warehouses. The labels are on each packing unit and contain Vishay Semiconductor GmbH specific data.

PLAIN WRITING	ABBREVIATION	LENGTH	
Item-description	-	18	
Item-number	INO	8	
Selection-code	SEL	3	
LOT-/serial-number	BATCH	10	
Data-code	COD	3 (YWW)	
Plant-code	PTC	2	
Quantity	QTY	8	
Accepted by	ACC	-	
Packed by	PCK	-	
Mixed code indicator	MIXED CODE	-	
Origin	xxxxxx+	Company logo	
Long bar code top	Туре	Length	
Item-number	N	8	
Plant-code	N	2	
Sequence-number	X	3	
Quantity	N	8	
Total length	-	21	
Short bar code bottom	Туре	Length	
Selection-code	X	3	
Data-code	N	3	
Batch-number	X	10	
Filter	-	1	
Total length	-	17	

DRY PACKING

The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage.

FINAL PACKING

The sealed reel is packed into a cardboard box.

RECOMMENDED METHOD OF STORAGE

Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available:

- Storage temperature 10 °C to 30 °C
- Storage humidity ≤ 60 % RH max.

After more than 72 h under these conditions moisture content will be too high for reflow soldering.

In case of moisture absorption, the devices will recover to the former condition by drying under the following condition:

192 h at 40 °C + 5 °C / - 0 °C and < 5 % RH (dry air / nitrogen) or

96 h at 60 °C + 5 °C and < 5 % RH for all device containers or

24 h at 125 °C + 5 °C not suitable for reel or tubes.

An EIA JEDEC® standard J-STD-020 level 4 label is included on all dry bags.

EIA JEDEC standard J-STD-020 level 4 label is included on all dry bags

TSOP393..TR1, TSOP395..TR1

Vishay Semiconductors

ESD PRECAUTION

Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electrostatic sensitive devices warning labels are on the packaging.

VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS

The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data.

22178

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.